• Infrared and Laser Engineering
  • Vol. 51, Issue 3, 20210944 (2022)
Ziyang Li1、2, Huasong Liu1、2, Peng Sun1、2, Xiao Yang1、2, Jinlin Bai1、2, Ying Xu1、2, Shiqi Yang1、2, Yiqin Ji1、2, and Jianzhong Su1、2
Author Affiliations
  • 1Tianjin Key Laboratory of Optical Thin Film, Tianjin Jinhang Institute of Technical Physics, Tianjin 300308, China
  • 2Wang Zhijiang Laser Innovation Center, Tianjin 300308, China
  • show less
    DOI: 10.3788/IRLA20210944 Cite this Article
    Ziyang Li, Huasong Liu, Peng Sun, Xiao Yang, Jinlin Bai, Ying Xu, Shiqi Yang, Yiqin Ji, Jianzhong Su. Design and preparation of laser/long-wave infrared dual-band antireflection thin-film[J]. Infrared and Laser Engineering, 2022, 51(3): 20210944 Copy Citation Text show less

    Abstract

    The design and preparation of multi-band antireflection thin-film on barium fluoride optical elements is the key to improve the detection performance of photoelectric system. 1064 nm laser/long-wave infrared dual-band antireflection thin-film was designed and prepared on barium fluoride substrate. Based on the calculation method of the admittance in periodically symmetric structure thin-film system and the optimization algorithm of fitting periods and reference wavelength, study on the design method of the initial film system of the multi-band antireflection thin-film was carried out. The films were prepared using the thermal evaporation ion-assisted deposition method. The results show that the film has excellent optical properties with a transmittance of 94.0% at 1064 nm, average transmittance of 96.3% in the long-wave infrared spectral band from 8 to 12 μm, and transmittance of 99.4% at 8.2 μm. The laser/long-wave infrared dual-band antireflection thin-film can be applied to dual-mode composite photodetection optoelectronic equipment, which is of great significance to improve the working performance of the photodetection system.
    $ \begin{split} {\boldsymbol{M}} =& \left[ {\begin{array}{*{20}{c}} {\cos \dfrac{{{\delta _H}}}{2}}&{\dfrac{i}{{{n_H}}}\sin \dfrac{{{\delta _H}}}{2}} \\ {i{n_H}\sin \dfrac{{{\delta _H}}}{2}}&{\cos \dfrac{{{\delta _H}}}{2}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\cos {\delta _L}\mathop {}\limits_{}^{} }&{\dfrac{i}{{{n_L}}}\sin {\delta _L}} \\ {i{n_L}\sin {\delta _L}\mathop {}\limits_{}^{} }&{\cos {\delta _L}} \end{array}} \right] \\&\left[ {\begin{array}{*{20}{c}} {\cos \dfrac{{{\delta _H}}}{2}}&{\dfrac{i}{{{n_H}}}\sin \dfrac{{{\delta _H}}}{2}} \\ {i{n_H}\sin \dfrac{{{\delta _H}}}{2}}&{\cos \dfrac{{{\delta _H}}}{2}} \end{array}} \right] \end{split} $(1)

    View in Article

    $ {\delta _H} = \dfrac{{2{\text{π }}}}{\lambda }{n_H}{d_H}\cos \theta $(2)

    View in Article

    $ \begin{split} \\ {\delta _L} = \dfrac{{2{\text{π }}}}{\lambda }{n_L}{d_L}\cos \theta \end{split}$(3)

    View in Article

    $ \begin{split} & {\boldsymbol{M}} = \left[ {\begin{array}{*{20}{c}} {{M_{11}}\mathop {}\limits_{}^{} }&{{M_{12}}} \\ {{M_{21}}\mathop {}\limits_{}^{} }&{{M_{22}}} \end{array}} \right] =\\ & \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\delta - \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} + \dfrac{{{n_L}}}{{{n_H}}}} \right){{\sin }^2}\delta }&{\dfrac{i}{{{n_H}}}\left[ {\sin \delta \cos \delta + \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} + \dfrac{{{n_L}}}{{{n_H}}}} \right)\cos \delta \sin \delta + \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} - \dfrac{{{n_L}}}{{{n_H}}}} \right)\sin \delta } \right]} \\ {i{n_H}\left[ {\sin \delta \cos \delta + \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} + \dfrac{{{n_L}}}{{{n_H}}}} \right)\cos \delta \sin \delta - \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} - \dfrac{{{n_L}}}{{{n_H}}}} \right)\sin \delta } \right]}&{{{\cos }^2}\delta - \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} + \dfrac{{{n_L}}}{{{n_H}}}} \right){{\sin }^2}\delta } \end{array}} \right] \end{split} $(4)

    View in Article

    $ {\boldsymbol{M}} = \left[ {\begin{array}{*{20}{c}} {\cos \Delta }&{\dfrac{i}{{H}}\sin \Delta } \\ {i{H}\sin \Delta }&{\cos \Delta } \end{array}} \right] $(5)

    View in Article

    $ \Delta = \arccos \left[ {{{\cos }^2}\delta - \dfrac{1}{2}\left( {\dfrac{{{n_H}}}{{{n_L}}} + \dfrac{{{n_L}}}{{{n_H}}}} \right){{\sin }^2}\delta } \right] $(6)

    View in Article

    $ {H} = {n_H}\left[ {\dfrac{{\cos \delta {{\left( {{n_H} + {n_L}} \right)}^2} - \left( {n_H^2 - n_L^2} \right)}}{{\cos \delta {{\left( {{n_H} + {n_L}} \right)}^2} + \left( {n_H^2 - n_L^2} \right)}}} \right] $(7)

    View in Article

    $ \begin{split} {{\boldsymbol{M}}^N} = {\left[ {\begin{array}{*{20}{c}} {\cos \Delta }&{\dfrac{i}{{H}}\sin \Delta } \\ {i{H}\sin \Delta }&{\cos \Delta } \end{array}} \right]^N} = \left[ {\begin{array}{*{20}{c}} {\cos N\Delta }&{\dfrac{i}{{H}}\sin N\Delta } \\ {i{H}\sin N\Delta }&{\cos N\Delta } \end{array}} \right] \end{split} $(8)

    View in Article

    $ \left[ {\begin{array}{*{20}{c}} B \\ C \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos N\Delta }&{\dfrac{i}{{H}}\sin N\Delta } \\ {i{H}\sin N\Delta }&{\cos N\Delta } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1 \\ {{n_s}} \end{array}} \right] $(9)

    View in Article

    $ Y = \dfrac{C}{B} = \dfrac{{{n_s}\cos N\Delta + i{H}\sin N\Delta }}{{\cos N\Delta + \dfrac{{i{n_s}}}{{H}}\sin N\Delta }} $(10)

    View in Article

    $ R = \left( {\dfrac{{1 - Y}}{{1 + Y}}} \right) \cdot {\left( {\dfrac{{1 - Y}}{{1 + Y}}} \right)^ * } $(11)

    View in Article

    $ {\text{MeritF}} = \sum\limits_{i = 1}^k {\dfrac{{{{\left[ {R\left( {{\lambda _i}} \right) - R\left( {{\lambda _t}} \right)} \right]}^2}}}{k}} $(12)

    View in Article

    Ziyang Li, Huasong Liu, Peng Sun, Xiao Yang, Jinlin Bai, Ying Xu, Shiqi Yang, Yiqin Ji, Jianzhong Su. Design and preparation of laser/long-wave infrared dual-band antireflection thin-film[J]. Infrared and Laser Engineering, 2022, 51(3): 20210944
    Download Citation