• Acta Optica Sinica
  • Vol. 37, Issue 11, 1126001 (2017)
Jie Zhu1、*, Huiqin Tang2, and Xiaoli Li1
Author Affiliations
  • 1 College of Science, Guizhou Institute of Technology, Guiyang, Guizhou 550003, China
  • 2 School of Physical Science and Technology, Central South University, Changsha, Hunan 410083, China
  • show less
    DOI: 10.3788/AOS201737.1126001 Cite this Article Set citation alerts
    Jie Zhu, Huiqin Tang, Xiaoli Li. Focusing Properties of Partially Coherent Gaussian Beam with Cosine-Lorentz Correlated Structural Function[J]. Acta Optica Sinica, 2017, 37(11): 1126001 Copy Citation Text show less
    References

    [1] Mandel L, Wolf E[M]. Optical coherence and quantum optics, 33-39(1995).

    [2] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser[J]. Optics Communications, 25, 293-296(1978). http://www.sciencedirect.com/science/article/pii/0030401878901311

    [3] Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources[J]. Optics Communications, 64, 311-316(1987). http://www.sciencedirect.com/science/article/pii/0030401887902422

    [4] Ponomarenko S A. A class of partially coherent beams carrying optical vortices[J]. Journal of the Optical Society of America A, 18, 150-156(2001). http://europepmc.org/abstract/MED/11151992

    [5] Li J, Gao X M, Chen Y R. Tight focusing of J0-correlated Gaussian Schell-model beam through high numerical aperture[J]. Optics Communications, 285, 3403-3411(2012). http://www.sciencedirect.com/science/article/pii/S0030401812003562

    [6] Cang J, Xiu P, Liu X. Propagation of Laguerre-Gaussian and Bessel-Gaussian Schell-model beams through paraxial optical systems in turbulent atmosphere[J]. Optics and Laser Technology, 54, 35-41(2013). http://www.sciencedirect.com/science/article/pii/S0030399213001576

    [7] Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 32, 3531-3533(2007). http://www.opticsinfobase.org/abstract.cfm?id=148358

    [8] Chen Y H, Gu J X, Wang F et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 91, 013823(2015). http://adsabs.harvard.edu/abs/2015PhRvA..91a3823C

    [9] Yu J Y, Chen Y H, Liu L et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam in Kolmogorov and non-Kolmogorov turbulence[J]. Optics Express, 23, 13467-13481(2015). http://europepmc.org/abstract/med/26074594

    [10] Chen Y H, Yu J Y, Yuan Y S et al. Theoretical and experimental studies of a rectangular Laguerre-Gaussian-correlated Schell-model beam[J]. Applied Physics B, 122, 31(2016). http://link.springer.com/article/10.1007/s00340-016-6318-y

    [11] Yu Jiayi, Chen Yahong, Cai Yangjian. Nonuniform Laguerre-Gaussian correlated beam and its propagation properties[J]. Acta Physica Sinica, 65, 214202(2016).

    [12] Liang C H, Wang F, Liu X L et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Optics Letters, 39, 769-772(2014). http://www.ncbi.nlm.nih.gov/pubmed/24562202

    [13] Mei Z R. Light sources generating self-splitting beams and their propagation in non-Kolmogorov turbulence[J]. Optics Express, 22, 13029-13040(2014). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-11-13029

    [14] Mei Z R, Korotkova O. Random sources generating ring shaped beams[J]. Optics Letters, 38, 91-93(2013). http://www.ncbi.nlm.nih.gov/pubmed/23454925

    [15] Wang F, Liu X, Yuan Y et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 38, 1814-1816(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ol-38-11-1814

    [16] Chen Y H, Cai Y J. Generation of a controllable optical cage by focusing a Laguerre-Gaussian correlated Schell-model beam[J]. Optics Letters, 39, 2549-2552(2014). http://www.opticsinfobase.org/abstract.cfm?URI=ol-39-9-2549

    [17] Chen Y H, Wang F, Zhao C L et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Optics Express, 22, 5826-5838(2014). http://europepmc.org/abstract/med/24663920

    [18] Chen Y H, Liu L, Wang F et al. Elliptical Laguerre-Gaussian correlated Schell-model beam[J]. Optics Express, 22, 13975-13987(2014). http://www.opticsinfobase.org/abstract.cfm?uri=oe-22-11-13975

    [19] Guo L N, Chen Y H, Liu L et al. Propagation of a Laguerre-Gaussian correlated Schell-model beam beyond the paraxial approximation[J]. Optics Communications, 352, 127-134(2015). http://www.sciencedirect.com/science/article/pii/S0030401815003715

    [20] Xu H F, Zhang Z, Qu J et al. The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams[J]. Journal of Modern Optics, 63, 1429-1437(2016). http://www.tandfonline.com/doi/full/10.1080/09500340.2016.1151565

    [21] Qiu Y L, Chen Z X, He Y J. Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media[J]. Optics Communications, 389, 303-309(2017). http://www.sciencedirect.com/science/article/pii/S0030401816311166

    [22] Mei Z R, Korotkova O. Cosine-Gaussian Schell-model sources[J]. Optics Letters, 38, 2578-2580(2013). http://europepmc.org/abstract/med/23939117

    [23] Mei Z R, Schchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence[J]. Optics Express, 21, 17512-17519(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-15-17512

    [24] Pan L, Ding C, Wang H. Diffraction of cosine-Gaussian-correlated Schell-model beams[J]. Optics Express, 22, 11670-11679(2014). http://www.opticsinfobase.org/abstract.cfm?URI=oe-22-10-11670

    [25] Xu H F, Zhang Z, Qu J et al. Propagation factors of cosine-Gaussian correlated Schell-model beams in non-Kolmogorov turbulence[J]. Optics Express, 22, 22479-22489(2014). http://www.opticsinfobase.org/abstract.cfm?URI=oe-22-19-22479

    [26] Ding C L, Liao L M, Wang H X et al. Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams[J]. Journal of Optics, 17, 035615(2015). http://www.ingentaconnect.com/content/iop/jopt2/2015/00000017/00000003/art035615

    [27] Zhu S J, Chen Y H, Wang J et al. Generation and propagation of a vector cosine-Gaussian correlated beam with radial polarization[J]. Optics Express, 23, 33099-33115(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-26-33099

    [28] Song Z Z, Liu Z J, Zhou K Y et al. Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence[J]. Chinese Physics B, 26, 024201(2017). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgwl201702026&dbname=CJFD&dbcode=CJFQ

    [29] Peng X, Chen C D, Chen B et al. Far-field intensity of Lorentz related beams[J]. Optics Communications, 381, 189-194(2016). http://www.sciencedirect.com/science/article/pii/S0030401816305685

    [30] Li J, Wang F, Korotkova O. Random sources for cusped beams[J]. Optics Express, 24, 17779-17791(2016). http://www.ncbi.nlm.nih.gov/pubmed/27505746

    [31] Wang F, Korotkova O. Circularly symmetric cusped random beams in free space and atmospheric turbulence[J]. Optics Express, 25, 5057-5067(2017). http://europepmc.org/abstract/MED/28380771

    [32] Ma L Y, Ponomarenko S M. Free-space propagation of optical coherence lattices and periodicity reciprocity[J]. Optics Express, 23, 1848-1856(2015). http://europepmc.org/abstract/MED/25835938

    [33] Chen Y H, Ponomarenko S A, Cai Y J. Experimental generation of optical coherence lattices[J]. Applied Physics Letters, 109, 061107(2016). http://scitation.aip.org/content/aip/journal/apl/109/6/10.1063/1.4960966

    [34] Mao Y M, Mei Z R. Random sources generating ring-shaped optical lattice[J]. Optics Communications, 381, 222-226(2016). http://www.sciencedirect.com/science/article/pii/S0030401816305879

    [35] Liu X L, Yu J Y, Cai Y J et al. Propagation of optical coherence lattices in the turbulent atmosphere[J]. Optics Letters, 41, 4182-4185(2016). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-41-18-4182

    [36] Song Z Z, Liu Z J, Zhou K Y et al. Propagation properties of Gaussian Schell model array beams in non-Kolmogorov turbulence[J]. Journal Optics, 18, 105601(2016). http://adsabs.harvard.edu/abs/2016JOpt...18j5601S

    [37] Hyde IV M W, Basu S, Voelz D G et al. . Experimentally generating any desired partially coherent Schell-model source using phase-only control[J]. Journal of Applied Physics, 118, 093102(2015). http://scitation.aip.org/content/aip/journal/jap/118/9/10.1063/1.4929811

    [38] Chang Chengcheng, Pu Jixiong, Chen Ziyang et al. Generation of non-uniformly correlated stochastic electromagnetic beams[J]. Acta Physica Sinica, 66, 054212(2017).

    [39] Chen Yahong, Cai Yangjian. Laser coherence modulation and its applications[J]. Acta Optica Sinica, 36, 1026002(2016).

    [40] Gradshtevn I S, Ryzhik I M[M]. Table of integral, series, and products(1980).

    Jie Zhu, Huiqin Tang, Xiaoli Li. Focusing Properties of Partially Coherent Gaussian Beam with Cosine-Lorentz Correlated Structural Function[J]. Acta Optica Sinica, 2017, 37(11): 1126001
    Download Citation