• Journal of Semiconductors
  • Vol. 40, Issue 3, 032201 (2019)
Shihua Huang1, Zhe Rui1, Dan Chi1, and Daxin Bao2
Author Affiliations
  • 1Provincial Key Laboratory of Solid State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China
  • 2Hengdian Group DMEGC Magnetics Co., Ltd, Dongyang 322118, China
  • show less
    DOI: 10.1088/1674-4926/40/3/032201 Cite this Article
    Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells[J]. Journal of Semiconductors, 2019, 40(3): 032201 Copy Citation Text show less
    References

    [1] L Dou, Y M Yang, J You et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun, 5, 5404(2014).

    [2] H Zhu, Y Fu, F Meng et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 14, 636(2015).

    [3] C C Stoumpos, M G Kanatzidis. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res, 48, 2791(2015).

    [4] C C Stoumpos, M G Kanatzidis. Halide perovskites: poor man’s high-performance Semiconductors. Adv Mater, 28, 5778(2016).

    [5] A Kojima, K Teshima, Y Shirai et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc, 131, 6050(2009).

    [6] M Saliba, T Matsui, J Y Seo et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ Sci, 9, 1989(2016).

    [7] M A Green, Y Hishikawa, W Warta et al. Solar cell efficiency tables (version 50). Prog Photovolt Res Appl, 25, 668(2017).

    [8] F Hao, C C Stoumpos, P Guo et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J Am Chem Soc, 137, 11445(2015).

    [9] T Yokoyama, D H Cao, C C Stoumpos et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process. J Phys Chem Lett, 7, 776(2016).

    [10] T Handa, T Yamada, H Kubota et al. Photocarrier recombination and injection dynamics in long-term stable lead-free CH3NH3SnI3 perovskite thin films and solar cells. J Phys Chem C, 121, 16158(2017).

    [11] N K Noel, S D Stranks, A Abate et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ Sci, 7, 3061(2014).

    [12] F Hao, C C Stoumpos, D H Cao et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics, 8, 489(2014).

    [13] Z Zhao, F Gu, Y Li et al. Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv Sci, 4, 1700204(2017).

    [14] A Gagliardi, M A Maur, D Gentilini et al. The real TiO2/HTM interface of solid-state dye solar cells: role of trapped states from a multiscale modelling perspective. Nanoscale, 7, 1136(2015).

    [15]

    [16] M Burgelman. Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 527, 361(2000).

    [17] H Zhou, Q Chen, G Li et al. Interface engineering of highly efficient perovskite solar cells. Science, 345, 542(2014).

    [18] E Edri, S Kirmayer, S Mukhopadhyay et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat Commun, 5, 3461(2014).

    [19] T Minemoto, M Murata. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells. J Appl Phys, 116, 054505(2014).

    [20] T Minemoto, M Murata. Theoretical analysis on effect of band offsets in perovskite solar cells. Sol Energy Matter Sol Cells, 133, 8(2015).

    [21] G Giorgi, K Yamashita. Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J Mater Chem A, 3, 8981(2015).

    [22] Q Zhang, C S Dandeneau, X Zhou et al. ZnO nanostructures for dye-sensitized solar cells. Adv Mater, 21, 4087(2009).

    [23] F Liu, J Zhu, J Wei et al. Numerical simulation: toward the design of high-efficiency planar perovskite solar cells. Appl Phys Lett, 104, 253508(2014).

    [24] M I Hossain, F H Alharbi, N Tabet. Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Sol Energy, 120, 370(2015).

    [25] P Umari, E Mosconi, F D Angelis. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci Report, 34, 4467(2014).

    [26] A Khaliq, F L Xue, K Varahramyan. Numerical simulation of spin coated P3HT organic thin film transistors with field dependent mobility and distributed contact resistance. Microelectron Eng, 86, 2312(2009).

    [27] A Chen, K Zhu, Q Shao et al. Understanding the effects of TCO work function on the performance of organic solar cells by numerical simulation. Semicond Sci Technol, 31, 065025(2016).

    [28] A Toshniwal, A Jariwala, V Kheraj et al. Numerical simulation of tin based perovskite solar cell: effects of absorber parameters and hole transport materials. J Nano-Electron Phys, 9, 03038(2017).

    [29] E Karimi, S M B Ghorashi. Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells. Optik, 130, 650(2017).

    [30] A Nakanishi, Y Takiguchi, S Miyajima. Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si:H/p-type μc-Si1-xOx:H tunnel junction. Phys Status Solidi A, 213, 1997(2016).

    [31] W Shockley, H J Queisser. Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys, 32, 510(1961).

    [32] S Rühle. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Sol Energy, 130, 139(2016).

    [33] A Marti, G L Araújo. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol Energy Mater Sol Cells, 43, 203(1996).

    [34] C Wehrenfennig, G E Eperon, M B Johnston et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater, 26, 1584(2014).

    [35] A G Kontos, A Kaltzoglou, E Siranidi et al. Structural stability, vibrational properties, and photoluminescence in CsSnI3 perovskite upon the addition of SnF2. Inorg Chem, 56, 84(2017).

    [36] T Yokoyama, T B Song, D H Cao et al. The origin of lower hole carrier concentration in methylammonium tin halide films grown by vapor-assisted solution process. ACS Energy Lett, 2, 22(2017).

    [37] W Ke, C C Stoumpos, J L Logsdon et al. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J Am Chem Soc, 138, 14998(2016).

    [38] X Xu, C C Chueh, Z Yang et al. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy, 34, 392(2017).

    Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells[J]. Journal of Semiconductors, 2019, 40(3): 032201
    Download Citation