• Photonics Research
  • Vol. 9, Issue 8, 1645 (2021)
Qi Geng1、2 and Ka-Di Zhu1、2、*
Author Affiliations
  • 1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai 200240, China
  • 2School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.1364/PRJ.423996 Cite this Article Set citation alerts
    Qi Geng, Ka-Di Zhu. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on exceptional point-based sensors[J]. Photonics Research, 2021, 9(8): 1645 Copy Citation Text show less
    References

    [1] T. Kato. Perturbation Theory for Linear Operators, 132(2013).

    [2] W. Heiss. Repulsion of resonance states and exceptional points. Phys. Rev. E, 61, 929-932(2000).

    [3] M. V. Berry. Physics of nonhermitian degeneracies. Czech. J. Phys., 54, 1039-1047(2004).

    [4] W. Heiss. “Exceptional points of non-Hermitian operators. J. Phys. A, 37, 2455-2464(2004).

    [5] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 033809(2016).

    [6] J. Wiersig. Review of exceptional point-based sensors. Photon. Res., 8, 1457-1467(2020).

    [7] M.-A. Miri, A. Alu. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [8] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 203901(2014).

    [9] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [10] A. U. Hassan, H. Hodaei, W. E. Hayenga, M. Khajavikhan, D. N. Christodoulides. Enhanced sensitivity in parity-time-symmetric microcavity sensors. Advanced Photonics, SeT4C.3(2015).

    [11] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [12] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [13] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [14] S. E. Harris, J. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [15] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [16] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    Qi Geng, Ka-Di Zhu. Discrepancy between transmission spectrum splitting and eigenvalue splitting: a reexamination on exceptional point-based sensors[J]. Photonics Research, 2021, 9(8): 1645
    Download Citation