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In the study of exceptional point (EP)-based sensors, the concrete form of the output spectrum is often dismissed,
and it is assumed that there is a corresponding relation between the peaks/valleys in the transmission spectrum
and the real parts of the eigenvalues of the system. We point out that this assumption does not always hold. An
effect, which is mathematically similar to electromagnetically induced transparency (EIT), may result in a ‘pseudo
spectrum splitting’ that does not correspond to the splitting between the eigenvalues. The effect shall be taken care
of when designing an EP-based sensor since it may cause measurement error and misunderstanding such as rec-
ognization of the spectrum splitting as the eigenvalue splitting at the exceptional point. We also propose to inten-
tionally utilize this ‘pseudo splitting’ to design a sensor, which does not work at an EP, that has an EP-like
spectrum splitting. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.423996

1. INTRODUCTION

A peculiar kind of degeneracy is known as the exceptional point
(EP) [1–4]. At an EP, not only the eigenvalues, but also the
eigenvectors coalesce. A small perturbation (ϵ) exerted on an
N -fold EP will result in a eigenvalue splitting that is propor-
tional to ϵ1∕N , while for a non-exceptional degeneracy known
as the diabolic point (DP), the eigenvalue splitting is propor-
tional to ϵ. Based on the fact that for a small ϵ the EP kind of
splitting is larger, EP-based sensors [5,6] have been proposed
for high precision measurement. The EP is often realized in
optical systems [7], and two typical realizations of an optical
EP are a microdisk with scatters [5,8,9] and coupled optical
cavities [10–12].

Most theoretical studies on the optical EP do not concern
with the concrete form of the output spectrum. They devoted
to the structure of the eigenvalues of the system’s Hamiltonian,
and make a simple assumption that the peaks/valleys of the
spectrum correspond to the real parts of the Hamiltonian’s ei-
genvalues, the linewidths of the peaks/valleys correspond to the
imaginary parts of the eigenvalues, and the splitting of the
peaks/valleys can only be discerned if the splitting is large com-
pared with the linewidths. The central point of this paper is to
show that the above assumption is not exact, and the inexact-
ness may affect the validity or precision of some EP-based sens-
ing schemes that is based on the valleys in the transmission
spectrum.

In fact, electromagnetically induced transparency (EIT) [13]
is a typical case that invalidates the correspondence relation be-
tween transmission spectrum splitting and eigenvalue splitting.
EIT was initially proposed by Harris and co-workers in a three-
level Λ-type atomic system [14]: by applying a strong coupling
field between a metastable state and the upper state of an al-
lowed transition to ground, one may obtain a resonantly en-
hanced third-order susceptibility while at the same time
inducing transparency of the media. The notion has been gen-
eralized to and has been studied in atomic and molecular sys-
tems, superconductors, optomechanics, whispering-gallery
mode microcavities (WGMRs), and so on (see Ref. [15],
Fig. 1, and Table 1). The point is, while the transparency win-
dow in EIT is reminiscent of eigenvalue splitting and in the
strong coupling regime the transparency window fits well with
the eigenvalue splitting [15], in many cases the transparency
window and the eigenvalue splitting do not coincide. In par-
ticular, in the weak coupling regime, there can be no eigenvalue
splitting while the transparency window still exists.

In this paper, we express the output spectrum of two
coupled WGMRs as the ratio of two polynomials. The poly-
nomial in the denominator is the characteristic polynomial
C�w� of the effective Hamiltonian’s eigenvalues, while the pol-
ynomial in the numerator, P�w�, is another second-order poly-
nomial. The point is, while the eigenvalues of the system are
related to C�w�, C�w� and P�w� together determine the valleys
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in the spectrum. In fact, in most cases, the valleys correspond to
the roots of P�w� � 0, in contrast to the common knowledge
that the valleys in the spectrum correspond to the roots of
C�w� � 0 (i.e., eigenvalues). This discrepancy between eigen-
values and the valleys in the spectrum may cause confusion,
making people wrongly recognize the valleys in the spectrum
as the eigenvalues of the system. Since these “fake valleys” ap-
pear when the two valleys are close, the caution shall be taken
when explaining the spectrum splittings in the experiments as
the eigenvalue splittings at EPs. We also note that a by-product
of our formulation is to provide a unified and transparent de-
scription of EIT and spectrum splitting caused by eigenvalue
splitting.

In a word, we suggest that there is a flaw in existing theory of
EP-based sensors: the valleys in the transmission spectrum may
not correspond to the real parts of the eigenvalues. We can even
conversely utilize the above fact to construct a sensing scheme
that does not correspond to an EP, while showing an EP-like
spectrum splitting. We show this in Section 4.

This paper is organized as follows. In Section 2, we derive
the expression of the output spectrum of two coupled
WGMRs. The method can be generalized to generic two-mode
systems without difficulty. In Section 3, we illustrate the dis-
crepancy between the valleys in the spectrum and the eigenval-
ues of the Hamiltonian. We discuss, respectively, the case
w1 � w2 and w1 ≠ w2 in each subsection. In Section 4, we
show that the above discrepancy can be conversely utilized
to design high precision sensors, which do not work at the
EPs, that exhibit EP-like, square root proportional spectrum
splittings.

2. OUTPUT SPECTRUM OF TWO COUPLED
WHISPERING-GALLERY MICROCAVITIES

We illustrate our idea based on coupled optical cavities
(e.g., coupled whispering-gallery microcavities [12]), as shown
in Fig. 1. The effective Hamiltonian of two coupled WGMs
features that the off-diagonal elements are mutually complex
conjugated (without loss of generality, we choose them to be
the same real value μ). The feature is shared by most two-mode
linear optical systems, while there are cases that the off-
diagonal elements are asymmetric, e.g., for a microdisk with

scatters [5,8,9], there is no difficulty to apply the method to
these systems.

In a two-mode approximation, the Hamiltonian of the sys-
tem of two coupled WGMs, without the input and the noise
taken into account, can be represented by a 2 × 2 matrix:

H � ℏ

�
w1 − i

κ1
2 μ

μ w2 − i
κ2
2

�
: (1)

We use a1 and a2 to denote the amplitudes of the two
modes. w1 is the resonant frequency of the first whispering-
gallery microcavity, while w2 is the resonant frequency of
the second whispering-gallery microcavity. κ1 and κ2 are the
overall cavity intensity decay rates for microcavity 1 and micro-
cavity 2, respectively. The equation of motion, with an input
ain injected into cavity 1, is

d

dt

�
a1
a2

�
� −i

�
w1 − i

κ1
2 μ

μ w2 − i
κ2
2

��
a1
a2

�

�
� ffiffiffiffiffiffi

κex
p

ain
0

�
, (2)

in which κex refers to the loss rate associated with the input
coupling [16]. We note that k1 � κ01 � κex, in which κ01 re-
fers to the loss aside from the input port. We have used a
classical (in contrast to quantum) approach and have neglected
the noise term. The classical approach is sufficient for our pur-
pose since we aim to point out the defect of the former under-
standing, which is as well based on a classical approach.

Equation (2) can be rewritten in the frequency domain as

−i
�
w − w1 � i κ12 −μ

−μ w − w2 � i κ2
2

��
a1�w�
a2�w�

�

�
� ffiffiffiffiffiffi

κex
p

ain�w�
0

�
, (3)

and via using the Cramer’s rule, the solution of the amplitude of
the first cavity can be derived as

a1�w� �
i

ffiffiffiffiffiffi
κex

p �
w − w2 � i κ22

�
����w − w1 � i κ12 −μ

−μ w − w2 � i κ22

����
ain�w�, (4)

in which the determinant in the denominator is the character-
istic polynomial of H . The solution can be rewritten as

a1�w� �
i

ffiffiffiffiffiffi
κex

p �
w − w2 � i κ22

�

�w − λ1��w − λ2�
ain�w�, (5)

in which λ1 and λ2 are the eigenvalues of the Hamiltonian H .
The output spectrum, according to the input-output rela-

tion [16], is

aout � ain −
ffiffiffiffiffiffi
κex

p
a1: (6)

Thus, the output spectrum can be written as

aout�w� �
P�w�

�w − λ1��w − λ2�
ain, (7)

in which P�w� is a second-order polynomial:

Fig. 1. Schematic of the system consisting of two coupled
whispering-gallery microcavities. We have not explicitly drawn the
taper in the figure.
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P�w� � �w − λ1��w − λ2� − iκex
�
w − w2 � i

κ2
2

�
: (8)

The transmission rate can be rewritten as

T �
���� �w − r1��w − r2�
�w − λ1��w − λ2�

����
2

, (9)

in which r1 and r2 are the roots of P�w� � 0. We can see from
Eq. (9) that, roughly, T obtains its minimum near r1,2. This is
in contrast to the intuition (misunderstanding) that the mini-
mum is obtained at the eigenvalues, i.e., λ1,2. The misunder-
standing results from several factors, and the main factor is that
for a large μ, the roots of P�w� approach λ1 and λ2, which lets
us think that the valleys in the spectrum correspond to the ei-
genvalues of the system.

In a more strict sense, T may not obtain its minimum at or
near Re�r1,2�. If the imaginary part of r1�r2� is comparable with
the corresponding eigenvalue’s imaginary part, then the mini-
mum may be obtained neither near r1�r2� nor λ1�λ2�. On the
other hand, if the imaginary part of r1�r2� is much smaller than
the imaginary part of λ1�λ2� as well as the real splitting between
r1 and r2, then we can assert that T obtains its minimum at
r1�r2�. This is the case if the system is in critical coupling
κex � κ1∕2 and κ1 ≫ κ2, which is a common case in EIT.
In Section 3, we choose such a case for discussion.

3. DISCREPANCY BETWEEN THE
TRANSMISSION VALLEYS AND THE
EIGENVALUES

In this section, we follow the above formulas, substitute a set of
concrete parameters, and show the discrepancy between the
transmission valleys and the eigenvalues explicitly.

A. Case of w1 � w2

We pick the parameters to be w1 � w2 � 10 GHz,
κ1∕2 � 1 MHz, κ2∕2 � 0.1 MHz, and κex � κ1∕2. The last
condition refers to the situation of “critical coupling” [16], for
which the output on resonance and without coupling is zero.
We have intentionally choose κ1 ≫ κ2, which resembles to the
case in EIT [15].

In Fig. 2, we plot the transmission rates for μ � 0,
μ � 0.2 MHz, and μ � 0.5 MHz. The corresponding eigen-
values of the system are λ1 � 10,000−0.15i MHz, λ2 �
10,000 − 0.95i MHz for μ � 0.2 MHz, and λ1 �
9999.78−0.55i MHz, λ2 � 10,000.22−0.55i MHz for
μ � 0.5 MHz. We can see from Fig. 2 that the valleys in
the spectrum do not correspond to the eigenvalues of the
Hamiltonian. For μ � 0.2 MHz, there is no splitting in the
real parts of the eigenvalues; however, a splitting in the spec-
trum appears. This splitting coincides with the roots of
P�w� � 0. For μ � 0.5 MHz, the minimum points agree with
the roots of P�w� � 0, while they do not agree with the eigen-
values of the system.

In Fig. 3, we plot the difference of the real parts of the ei-
genvalues, the difference of the real parts of the roots of
P�w� � 0, and the splitting width in the transmission spec-
trum with different μ. We see from the figure that the splitting
of the eigenvalues of the system does not correspond to the
valleys in the spectrum. It is the splitting of the roots of

P�w� � 0, instead, that indicates the splitting width of the
transmission spectrum. With μ increasing, Re�Δλ� approaches
Re�Δr� and, thus, agrees with the splitting width in the trans-
mission spectrum.

We can see from Fig. 3 that the splitting width equals
Re�Δr� for a wide range of μ. While the fact is well known
in case the coupling is strong, i.e., μ > κ1∕2, it may not so
familiar that two well-resolved valleys with the splitting width
can appear for μ ≪ κ1.

B. Case of w1 ≠ w2

The parameters in Fig. 4 are w1 � 10,000 MHz,
w2 � 10,000.1 MHz, κ1∕2 � 1 MHz, κ2∕2 � 0.1 MHz,

Fig. 3. Re�Δλ� denotes the real splitting between the eigenvalues,
Re�Δr� denotes the real splitting between the roots of P�w� � 0,
and ΔW denotes the splitting in the spectrum. ΔW agrees with
Re�Δr�. When μ is large, Re�Δλ� ≈ Re�Δr�. The parameters are the
same as in Fig. 2.

Fig. 2. Spectrum of two coupled cavities, which has a splitting similar
to EIT. The parameters are w1 � w2 � 10 GHz, κ1∕2 � 1 MHz,
κ2∕2 � 0.1 MHz, κex � κ1∕2, and μ � 0, 0.2, 0.5 MHz. The corre-
sponding eigenvalues as well as the roots of P�w� � 0 are as follows:
for μ � 0, λ1 � 10,000− i, λ2 � 10,000−0.1i, r1 � 10,000, r2 �
10,000−0.1i; for μ � 0.2MHz, λ1 � 10,000−0.15i, λ2 � 10,000−
0.95i, r1 � 9999.81 − 0.05i, r2 � 10,000.19 − 0.05i; for μ �
0.5 MHz, λ1 � 9999.78−0.55i, λ2 � 10,000.22−0.55i, r1 �
9999.50−0.05i, r2 � 10,000.50 − 0.05i.
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and μ � 0.3 MHz. As shown in Fig. 4, there would be a large
error if we recognize the valleys in the spectrum as the eigen-
values of the Hamiltonian.

We suggest that this discrepancy shall be taken care of
when designing an EP-based sensor, especially for the sensing
schemes aimed to detect the small variation in a diagonal
element in the Hamiltonian.

4. CONSTRUCTING AN EP-LIKE SPECTRUM
SPLITTING

In this section, we intentionally use the above discrepancy to
construct a sensing scheme. The scheme exhibits EP-like spec-
trum splittings (proportional to the square root of the pertur-
bations), though it does not work at an EP. The sensing scheme
also shows a violation to the understanding that, to observe a
perturbation induced spectrum splitting, the imaginary parts of
the eigenvalues will be small compared to the splitting, which is
well accepted in previous studies of sensors based on spectrum
splittings. The central idea of our scheme is to construct a
P�w�, which has repeated real roots. This can be achieved
by using an overcoupled cavity with κex � κ1∕2� κ2∕2,
and setting the base coupling coefficient to be μ0 � κ2∕2.

We choose the parameters to be w1 � w2 � 10 GHz,
κ1∕2 � κ2∕2 � κex∕2 � 1 MHz, μ0 � 1 MHz, and μ �
μ0 � Δμ. We see from Fig. 5 that a perturbation Δμ �
0.1 MHz results in a spectrum splitting ≈0.9 MHz, which
is much larger thanΔμ. We can also see that the spectrum split-
ting exhibits a square root proportionality to Δμ. In fact, the
roots of P�w� � 0 are

r � 10�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δμ� Δμ2

p
: (10)

Thus, the splitting approximates 2
ffiffiffiffiffiffiffiffiffi
2Δμ

p
when Δμ ≪ 2.

Thus, the spectrum exhibits a Δμ1∕2 proportional splitting,
which is the feature of the proposed EP-based sensing scheme.

A potential advantage of this kind of sensor, compared
with the well-known parity-time-symmetric EP sensor, is that
the latter is based on an unstable system since it has real eigen-
values. In our system in this section, the Hamiltonian has

eigenvalues with negative imaginary parts; thus, the transient
part in the solution quickly decays off.

5. CONCLUSION

In this paper, we demonstrate that in the system of two coupled
WGMs, the eigenvalues may not correspond to the valleys in
the transmission spectrum. We suggest the mechanism shall be
taken into account when designing an EP-based sensor since it
may cause measurement error and make people wrongly recog-
nize the splitting due to this effect as an eigenvalue splitting.
We show that we can even utilize this mechanism to design
a sensor that does not work at an EP and has an EP-like square
root proportional spectrum splitting.
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