• Photonics Research
  • Vol. 8, Issue 2, 186 (2020)
Qingyang Du1, Jérôme Michon1, Bingzhao Li2, Derek Kita1, Danhao Ma1, Haijie Zuo1, Shaoliang Yu1, Tian Gu1, Anuradha Agarwal1, Mo Li2、3, and Juejun Hu1、*
Author Affiliations
  • 1Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  • 2Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, USA
  • 3Department of Physics, University of Washington, Seattle, Washington 98195, USA
  • show less
    DOI: 10.1364/PRJ.379019 Cite this Article Set citation alerts
    Qingyang Du, Jérôme Michon, Bingzhao Li, Derek Kita, Danhao Ma, Haijie Zuo, Shaoliang Yu, Tian Gu, Anuradha Agarwal, Mo Li, Juejun Hu. Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips[J]. Photonics Research, 2020, 8(2): 186 Copy Citation Text show less
    References

    [1] M. Asghari, A. V. Krishnamoorthy. Silicon photonics: energy-efficient communication. Nat. Photonics, 5, 268-270(2011).

    [2] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [3] D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, J. Hu. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).

    [4] S. S. El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J.-M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos. Silicon photonics for high energy physics data transmission applications. 11th International Conference on Group IV Photonics (GFP), 1-2(2014).

    [5] V. C. Duarte, J. G. Prata, R. N. Nogueira, G. Winzer, L. Zimmermann, R. Walker, S. Clements, M. Filipowicz, M. Napierala, T. Nasilowski. Modular and smooth introduction of photonics in high-throughput communication satellites–perspective of project BEACON. Proc. SPIE, 11180, 1118079(2019).

    [6] Z. Ahmed, L. T. Cumberland, N. N. Klimov, I. M. Pazos, R. E. Tosh, R. Fitzgerald. Assessing radiation hardness of silicon photonic sensors. Sci. Rep., 8, 13007(2018).

    [7] A. Kraxner, S. Detraz, L. Olantera, C. Scarcella, C. Sigaud, C. Soos, J. Troska, F. Vasey. Investigation of the influence of temperature and annealing on the radiation hardness of silicon Mach-Zehnder modulators. IEEE Trans. Nucl. Sci., 65, 1624-1631(2018).

    [8] M. Zeiler, S. S. El Nasr-Storey, S. Detraz, A. Kraxner, L. Olantera, C. Scarcella, C. Sigaud, C. Soos, J. Troska, F. Vasey. Radiation damage in silicon photonic Mach-Zehnder modulators and photodiodes. IEEE Trans. Nuclear Sci., 64, 2794-2801(2017).

    [9] C. N. Arutt, M. L. Alles, W. Liao, H. Gong, J. L. Davidson, R. D. Schrimpf, R. A. Reed, R. A. Weller, K. Bolotin, R. Nicholl. The study of radiation effects in emerging micro and nano electro mechanical systems (M and NEMs). Semicond. Sci. Technol., 32, 013005(2016).

    [10] F. Morichetti, S. Grillanda, S. Manandhar, V. Shutthanandan, L. Kimerling, A. Melloni, A. M. Agarwal. Alpha radiation effects on silicon oxynitride waveguides. ACS Photonics, 3, 1569-1574(2016).

    [11] Q. Du, Y. Huang, O. Ogbuu, W. Zhang, J. Li, V. Singh, A. M. Agarwal, J. Hu. Gamma radiation effects in amorphous silicon and silicon nitride photonic devices. Opt. Lett., 42, 587-590(2017).

    [12] V. Brasch, Q.-F. Chen, S. Schiller, T. J. Kippenberg. Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics. Opt. Express, 22, 30786-30794(2014).

    [13] S. Grillanda, V. Singh, V. Raghunathan, F. Morichetti, A. Melloni, L. Kimerling, A. M. Agarwal. Gamma radiation effects on silicon photonic waveguides. Opt. Lett., 41, 3053-3056(2016).

    [14] S. Bhandaru, S. Hu, D. Fleetwood, S. Weiss. Total ionizing dose effects on silicon ring resonators. IEEE Trans. Nucl. Sci., 62, 323-328(2015).

    [15] P. Dumon, R. Kappeler, D. Barros, I. McKenzie, D. Doyle, R. Baets. Measured radiation sensitivity of silica-on-silicon and silicon-on-insulator micro-photonic devices for potential space application. Proc. SPIE, 5897, 58970D(2005).

    [16] S. S. El Nasr-Storey, F. Boeuf, C. Baudot, S. Detraz, J. M. Fedeli, D. Marris-Morini, L. Olantera, G. Pezzullo, C. Sigaud, C. Soos. Effect of radiation on a Mach-Zehnder interferometer silicon modulator for HL-LHC data transmission applications. IEEE Trans. Nucl. Sci., 62, 329-335(2015).

    [17] S. S. El Nasr-Storey, S. Detraz, L. Olanterä, C. Sigaud, C. Soós, G. Pezzullo, J. Troska, F. Vasey, M. Zeiler. Neutron and X-ray irradiation of silicon based Mach-Zehnder modulators. J. Instrum., 10, C03040(2015).

    [18] W. Weber, W. Jiang, S. Thevuthasan. Defect annealing kinetics in irradiated 6H-SiC. Nucl. Instrum. Methods Phys. Res. Sect. B, 166, 410-414(2000).

    [19] G. Brunetti, I. McKenzie, F. Dell’Olio, M. N. Armenise, C. Ciminelli. Measured radiation effects on InGaAsP/InP ring resonators for space applications. Opt. Express, 27, 24434-24444(2019).

    [20] P. Sellin, J. Vaitkus. New materials for radiation hard semiconductor dectectors. Nuclear Instrum. Methods Phys. Res. Sect. A, 557, 479-489(2006).

    [21] X. Lu, J. Y. Lee, S. Rogers, Q. Lin. Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826-30832(2014).

    [22] P. Xing, D. Ma, K. J. Ooi, J. W. Choi, A. M. Agarwal, D. Tan. CMOS-compatible PECVD silicon carbide platform for linear and nonlinear optics. ACS Photonics, 6, 1162-1167(2019).

    [23] B.-S. Song, S. Yamada, T. Asano, S. Noda. Demonstration of two-dimensional photonic crystals based on silicon carbide. Opt. Express, 19, 11084-11089(2011).

    [24] Y. Zheng, M. Pu, A. Yi, B. Chang, T. You, K. Huang, A. N. Kamel, M. R. Henriksen, A. A. Jørgensen, X. Ou. High-quality factor, high-confinement microring resonators in 4H-silicon carbide-on-insulator. Opt. Express, 27, 13053-13060(2019).

    [25] T. Fan, H. Moradinejad, X. Wu, A. A. Eftekhar, A. Adibi. High-Q integrated photonic microresonators on 3C-SiC-on-insulator (SiCOI) platform. Opt. Express, 26, 25814-25826(2018).

    [26] A. P. Magyar, D. Bracher, J. C. Lee, I. Aharonovich, E. L. Hu. High quality SiC microdisk resonators fabricated from monolithic epilayer wafers. Appl. Phys. Lett., 104, 051109(2014).

    [27] J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, M. Lipson. High Q SiC microresonators. Opt. Express, 21, 16882-16887(2013).

    [28] I. Chatzopoulos, F. Martini, R. Cernansky, A. Politi. High-Q/V photonic crystal cavities and QED analysis in 3C-SiC. ACS Photonics, 6, 1826-1831(2019).

    [29] D. Allioux, A. Belarouci, D. Hudson, E. Magi, M. Sinobad, G. Beaudin, A. Michon, N. Singh, R. Orobtchouk, C. Grillet. Toward mid-infrared nonlinear optics applications of silicon carbide microdisks engineered by lateral under-etching. Photon. Res., 6, B74-B81(2018).

    [30] M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, J. Vučković. Photonic crystal cavities in cubic (3C) polytype silicon carbide films. Opt. Express, 21, 32623-32629(2013).

    [31] G. Calusine, A. Politi, D. D. Awschalom. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett., 105, 011123(2014).

    [32] A. Lohrmann, T. J. Karle, V. K. Sewani, A. Laucht, M. Bosi, M. Negri, S. Castelletto, S. Prawer, J. C. McCallum, B. C. Johnson. Integration of single-photon emitters into 3C-SiC microdisk resonators. ACS Photonics, 4, 462-468(2017).

    [33] D. O. Bracher, E. L. Hu. Fabrication of high-Q nanobeam photonic crystals in epitaxially grown 4H-SiC. Nano Lett., 15, 6202-6207(2015).

    [34] X. Lu, J. Y. Lee, P. X.-L. Feng, Q. Lin. High Q silicon carbide microdisk resonator. Appl. Phys. Lett., 104, 181103(2014).

    [35] J. T. Robinson, K. Preston, O. Painter, M. Lipson. First-principle derivation of gain in high-index-contrast waveguides. Opt. Express, 16, 16659-16669(2008).

    [36] Q. Li, A. A. Eftekhar, Z. Xia, A. Adibi. Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators. Opt. Lett., 37, 1586-1588(2012).

    [37] J. Hu, X. Sun, A. Agarwal, L. C. Kimerling. Design guidelines for optical resonator biochemical sensors. J. Opt. Soc. Am. B, 26, 1032-1041(2009).

    [38] J. Hu, A. Agarwal, L. Kimerling, F. Morichetti, A. Melloni, N. Carlie, K. Richardson. Cavity-enhanced photosensitivity in As2S3 chalcogenide glass. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BWD2(2010).

    [39] J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, L. Kimerling. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. Opt. Lett., 33, 2500-2502(2008).

    [40] F. De Leonardis, B. Troia, C. E. Campanella, F. Prudenzano, V. M. Passaro. Modeling of radiation effects in silicon photonic devices. IEEE Trans. Nuclear Sci., 62, 2155-2168(2015).

    [41] J. Kwon, A. T. Motta. Gamma displacement cross-sections in various materials. Ann. Nucl. Energy, 27, 1627-1642(2000).

    [42] F. Piao, W. G. Oldham, E. E. Haller. The mechanism of radiation-induced compaction in vitreous silica. J. Non-Cryst. Solids, 276, 61-71(2000).

    [43] B. J. Cowen, M. S. El-Genk. Point defects production and energy thresholds for displacements in crystalline and amorphous SiC. Comput. Mater. Sci., 151, 73-83(2018).

    [44] M. Ediger, P. Harrowell. Perspective: supercooled liquids and glasses. J. Chem. Phys., 137, 080901(2012).

    [45] S. Geiger, Q. Du, B. Huang, M. Y. Shalaginov, J. Michon, H. Lin, T. Gu, A. Yadav, K. A. Richardson, X. Jia. Understanding aging in chalcogenide glass thin films using precision resonant cavity refractometry. Opt. Mater. Express, 9, 2252-2263(2019).

    [46] O. Imagawa, K. Yasuda, A. Yoshida. Gamma-ray irradiation effect in amorphous hydrogenated silicon. J. Appl. Phys., 66, 4719-4722(1989).

    [47] J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, L. C. Kimerling. Cavity-enhanced IR absorption in planar chalcogenide glass microdisk resonators: experiment and analysis. J. Lightwave Technol., 27, 5240-5245(2009).

    [48] A. Yariv. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electron. Lett., 36, 321-322(2000).

    [49] B. L. Doyle. Displacement damage caused by gamma-rays and neutrons on Au and Se(2014).

    [50] 50European Space Components Information Exchange System database.

    [51] O. S. Oen, D. K. Holmes. Cross sections for atomic displacements in solids by gamma rays. J. Appl. Phys., 30, 1289-1295(1959).

    [52] H. Cember. Introduction to Health Physics(1983).

    Qingyang Du, Jérôme Michon, Bingzhao Li, Derek Kita, Danhao Ma, Haijie Zuo, Shaoliang Yu, Tian Gu, Anuradha Agarwal, Mo Li, Juejun Hu. Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips[J]. Photonics Research, 2020, 8(2): 186
    Download Citation