• Laser & Optoelectronics Progress
  • Vol. 56, Issue 7, 070005 (2019)
Jia Zhang, Liang Hong, Sheng Ren, Feifan Zhou, Rui Hu, Junle Qu, and Liwei Liu*
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/LOP56.070005 Cite this Article Set citation alerts
    Jia Zhang, Liang Hong, Sheng Ren, Feifan Zhou, Rui Hu, Junle Qu, Liwei Liu. Research Progress on Label-Free Microscopic Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070005 Copy Citation Text show less
    References

    [1] Klar T A, Jakobs S, Dyba M et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 8206-8210(2000). http://europepmc.org/abstract/MED/10899992

    [2] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006). http://europepmc.org/abstract/MED/16902090

    [3] Nakayama Y, Pauzauskie P J, Radenovic A et al. Tunable nanowire nonlinear optical probe[J]. Nature, 447, 1098-1101(2007). http://www.nature.com/nature/journal/v447/n7148/abs/nature05921.html

    [4] Yao J J, Wang L D, Li C Y et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 112, 014302(2014). http://europepmc.org/articles/PMC3957272

    [5] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [6] Raghunathan R, Singh M, Dickinson M et al. Optical coherence tomography for embryonic imaging: a review[J]. Journal of Biomedical Optics, 21, 050902(2016). http://www.ncbi.nlm.nih.gov/pubmed/27228503

    [7] Aydin A, Wollstein G, Price L L et al. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery[J]. Ophthalmology, 110, 1506-1511(2003). http://pubmedcentralcanada.ca/pmcc/articles/PMC1939722/

    [8] Jia Y L, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012). http://europepmc.org/articles/PMC3381646/

    [9] Zhang Q Q, Huang Y P, Zhang T et al. Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking[J]. Journal of Biomedical Optics, 20, 066008(2015). http://www.ncbi.nlm.nih.gov/pubmed/26102573

    [10] Tearney G J, Bouma B E. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis[J]. Optics Letters, 27, 533-535(2002). http://europepmc.org/abstract/MED/18007856

    [11] Motaghian N S M, Joo C, Tearney G J et al. . Application of maximum likelihood estimator in nano-scale optical path length measurement using spectral-domain optical coherence phase microscopy[J]. Optics Express, 16, 17186-17195(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000016000011000189000001&idtype=cvips&gifs=Yes

    [12] D'amico A V, Weinstein M, Li X D et al. . Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland[J]. Urology, 55, 783-787(2000). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=10792101

    [13] Welzel J. Optical coherence tomography in dermatology: a review[J]. Skin Research and Technology, 7, 1-9(2001). http://www.ncbi.nlm.nih.gov/pubmed/11301634

    [14] Baumgartner A, Dichtl S, Hitzenberger C K et al. Polarization-sensitive optical coherence tomography of dental structures[J]. Caries Research, 34, 59-69(2000). http://www.ncbi.nlm.nih.gov/pubmed/10601786

    [15] Leitgeb R A, Werkmeister R M, Blatter C et al. Doppler optical coherence tomography[J]. Progress in Retinal and Eye Research, 41, 26-43(2014).

    [16] Liu G J, Chen Z P. Advances in Doppler OCT[J]. Chinese Optics Letters, 11, 011702(2013). http://www.opticsjournal.net/Articles/Abstract?aid=OJ130115000014IfLiOk

    [17] Diebold G J, Sun T, Khan M I. Photoacoustic monopole radiation in one, two, and three dimensions[J]. Physical Review Letters, 67, 3384-3387(1991). http://www.ncbi.nlm.nih.gov/pubmed/10044720

    [18] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 30, 625-627(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000009000009000135000001&idtype=cvips&gifs=Yes

    [19] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000015000012000149000001&idtype=cvips&gifs=Yes

    [20] Song L, Maslov K, Wang L V. Multifocal optical-resolution photoacoustic microscopy in vivo[J]. Optics Letters, 36, 1236-1238(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3093968/

    [21] Aguirre J, Schwarz M, Soliman D et al. Broadband mesoscopic optoacoustic tomography reveals skin layers[J]. Optics Letters, 39, 6297-6300(2014). http://www.ncbi.nlm.nih.gov/pubmed/25361338

    [22] Wang X D, Pang Y J, Ku G et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 21, 803-806(2003). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=12808463

    [23] Lin H C A, Chekkoury A, Omar M et al. . Selective plane illumination optical and optoacoustic microscopy for postembryonic imaging[J]. Laser & Photonics Reviews, 9, L29-L34(2015). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500120/pdf

    [24] Park K, Kim J Y, Lee C et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 7, 13359(2017).

    [25] Tian C, Zhang W, Mordovanakis A et al. Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography[J]. Optics Express, 25, 15947-15955(2017). http://www.ncbi.nlm.nih.gov/pubmed/28789105

    [26] Chu S W, Chen S Y, Tsai T H et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy[J]. Optics Express, 11, 3093-3099(2003). http://europepmc.org/abstract/MED/19471431

    [27] Fine S, Hansen W P. Optical second harmonic generation in biological systems[J]. Applied Optics, 10, 2350-2353(1971). http://www.opticsinfobase.org/abstract.cfm?id=73031

    [28] Bancelin S, Aimé C, Gusachenko I et al. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals[J]. Nature Communications, 5, 4920(2014). http://europepmc.org/abstract/med/25223385

    [29] Small D M, Jones J S, Tendler I I et al. Label-free imaging of atherosclerotic plaques using third-harmonic generation microscopy[J]. Biomedical Optics Express, 9, 214-229(2018). http://www.opticsinfobase.org/boe/abstract.cfm?uri=boe-9-1-214

    [30] Gauderon R, Lukins P B. Sheppard C J R. Simultaneous multichannel nonlinear imaging: combined two-photon excited fluorescence and second-harmonic generation microscopy[J]. Micron, 32, 685-689(2001).

    [31] Mahou P, Olivier N, Labroille G et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos[J]. Biomedical Optics Express, 2, 2837-2849(2011). http://www.ncbi.nlm.nih.gov/pubmed/22025988

    [32] Segawa H, Okuno M, Kano H et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)[J]. Optics Express, 20, 9551-9557(2012). http://www.ncbi.nlm.nih.gov/pubmed/22535046

    [33] Nan X L, Potma E O, Xie X S. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy[J]. Biophysical Journal, 91, 728-735(2006). http://europepmc.org/articles/PMC1483100/

    [34] Eckhardt G, Hellwarth R W. McClung F J, et al. Stimulated Raman scattering from organic liquids[J]. Physical Review Letters, 9, 455-458(1962).

    [35] Lee J Y, Hong B H, Kim W Y et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses[J]. Nature, 460, 498-501(2009). http://www.nature.com/nature/journal/v460/n7254/abs/nature08173.html

    [36] Wang Z B, Guo W, Li L et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2, 218-224(2011). http://www.tandfonline.com/servlet/linkout?suffix=cit0126&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=21364557

    [37] Li L, Guo W, Yan Y Z et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2, e104(2013). http://www.tandfonline.com/servlet/linkout?suffix=cit0127&dbid=16&doi=10.1080%2F05704928.2017.1323309&key=10.1038%2Flsa.2013.60

    [38] Huszka G, Yang H. Gijs M A M. Microsphere-based super-resolution scanning optical microscope[J]. Optics Express, 25, 15079-15092(2017). http://europepmc.org/abstract/MED/28788940

    [39] Hong G S, Lee J C, Robinson J T et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence[J]. Nature Medicine, 18, 1841-1846(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3595196/

    [40] Yang V X D, Gordon M L, Seng-Yue E et al. . High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): imaging in vivo cardiac dynamics of xenopus laevis[J]. Optics Express, 11, 1650-1658(2003).

    [41] Sudheendran N, Syed S H, Dickinson M E et al. Speckle variance OCT imaging of the vasculature in live mammalian embryos[J]. Laser Physics Letters, 8, 247-252(2011).

    [42] Peterson L M, Jenkins M W, Gu S et al. 4D shear stress maps of the developing heart using Doppler optical coherence tomography[J]. Biomedical Optics Express, 3, 3022-3032(2012).

    [43] Wang S, Lopez A L, Larina I V. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis[J]. Proceedings of SPIE, 10493, 104930C(2018).

    [44] Kruger R A, Lam R B, Reinecke D R et al. Photoacoustic angiography of the breast[J]. Medical Physics, 37, 6096-6100(2010).

    [45] Ku G, Fornage B D, Jin X et al. Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging[J]. Technology in Cancer Research & Treatment, 4, 559-566(2005).

    [46] Matsumoto Y, Asao Y, Yoshikawa A et al. Label-free photoacoustic imaging of human palmar vessels: a structural morphological analysis[J]. Scientific Reports, 8, 786(2018).

    [47] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nature Reviews Cancer, 5, 161-171(2005).

    [48] Yao J J. Wang L H V. Photoacoustic brain imaging: from microscopic to macroscopic scales[J]. Neurophotonics, 1, 011003(2014).

    [49] Lui H, Zhao J. McLean D, et al. Real-time Raman spectroscopy for in vivo skin cancer diagnosis[J]. Cancer Research, 72, 2491-2500(2012).

    [50] He J P, Wang N, Tsurui H et al. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: differentiate malignant melanoma from benign tumor tissue[J]. Scientific Reports, 6, 30209(2016).

    [51] Stummer W. 5-aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging[J]. Neurosurgery, 76, 230-231(2015).

    [52] Kut C, Chaichana K L, Xi J F et al. 7(292): 292ra100[J]. in vivo using quantitative optical coherence tomography. Science Translational Medicine(2015).

    [53] Ji M B, Orringer D A, Freudiger C W et al. 5(201): 201ra119[J]. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine(2013).

    [54] Jermyn M, Mok K, Mercier Jet al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. 7(274): 274ra19(2015).

    [55] Kuzmin N V. Wesseling P, de Witt Hamer P C, et al. Third harmonic generation imaging for fast, label-free pathology of human brain tumors[J]. Biomedical Optics Express, 7, 1889-1904(2016).

    [56] Losick R, Desplan C. Stochasticity and cell fate[J]. Science, 320, 65-68(2008).

    [57] Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells[J]. Annual Review of Cell and Developmental Biology, 25, 301-327(2009).

    [58] Wang L D, Maslov K. Wang L H V. Single-cell label-free photoacoustic flowoxigraphy in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 110, 5759-5764(2013).

    [59] He G, Xu D, Qin H et al. In vivo cell characteristic extraction and identification by photoacoustic flow cytography[J]. Biomedical Optics Express, 6, 3748-3756(2015).

    [60] Zhao Y, Yang S H, Chen C G et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 39, 2565-2568(2014).

    [61] Marrison J, Räty L, Marriott P et al. Ptychography-a label free, high-contrast imaging technique for live cells using quantitative phase information[J]. Scientific Reports, 3, 2369(2013).

    [62] Lim H, Sharoukhov D, Kassim I et al. Label-free imaging of Schwann cell myelination by third harmonic generation microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 111, 18025-18030(2014).

    [63] Jüngst C, Klein M, Zumbusch A. Long-term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes[J]. Journal of Lipid Research, 54, 3419-3429(2013).

    [64] Kim G, Lee S, Shin S et al. Three-dimensional label-free imaging and analysis of pinus pollen grains using optical diffraction tomography[J]. Scientific Reports, 8, 1782(2018).

    [65] Liu X W, Kuang C F, Hao X et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Physical Review Letters, 118, 076101(2017).

    [66] Chen Z J, Yang S H, Xing D. Optically integrated trimodality imaging system: combined all-optical photoacoustic microscopy, optical coherence tomography, and fluorescence imaging[J]. Optics Letters, 41, 1636-1639(2016).

    [67] Meng X Q, Yang Y T, Zhou L H et al. Dual-responsive molecular probe for tumor targeted imaging and photodynamic therapy[J]. Theranostics, 7, 1781-1794(2017).

    Jia Zhang, Liang Hong, Sheng Ren, Feifan Zhou, Rui Hu, Junle Qu, Liwei Liu. Research Progress on Label-Free Microscopic Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070005
    Download Citation