• Acta Optica Sinica
  • Vol. 41, Issue 5, 0516001 (2021)
Tiesheng Wu1、2、3、*, Xueyu Wang1、**, Huixian Zhang1, Yiying Wang1, Weiping Cao1, and Yiping Wang2、3、***
Author Affiliations
  • 1Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, College of Information and Communication, Guilin University of Electronic Technology, Guilin,Guangxi 541004, China
  • 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • 3Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/AOS202141.0516001 Cite this Article Set citation alerts
    Tiesheng Wu, Xueyu Wang, Huixian Zhang, Yiying Wang, Weiping Cao, Yiping Wang. Ultra-Broadband Perfect Absorber Based on Multilayered Zr/SiO2 Film[J]. Acta Optica Sinica, 2021, 41(5): 0516001 Copy Citation Text show less
    References

    [1] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Wang Y, Leng Y B, Dong L H et al. Design of tunable metamaterial absorber based on graphene-metal hybrid structure[J]. Acta Optica Sinica, 38, 0716001(2018).

    [3] Mao Q J, Feng C Z. Absorptance properties of nested-ring metamaterial absorbers based on magnetic polaritons[J]. Acta Optica Sinica, 39, 0816001(2019).

    [4] Durmaz H, Cetin A E, Li Y Y et al. A polarization insensitive wide-band perfect absorber[J]. Advanced Engineering Materials, 21, 1900188(2019). http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiAyYjUwMTAxNzYzMzU5N2VjZGEzYjZmOTFjMGNiYjNmZBoIanZ2dXdyNWs%3D

    [5] Deng H X, Mathai C J, Gangopadhyay S et al. Ultra-broadband infrared absorption by tapered hyperbolic multilayer waveguides[J]. Optics Express, 26, 6360-6370(2018).

    [6] Bagheri S, Zgrabik C M, Gissibl T et al. Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid-infrared by femtosecond direct laser writing and interference lithography [Invited[J]. Optical Materials Express, 5, 2625-2633(2015). http://www.osapublishing.org/ome/abstract.cfm?uri=ome-5-11-2625

    [7] Yuzhakova A, Zhukova L. Akif'eva N, et al. Application of infrared polycrystalline fibers in thermal imaging temperature control systems[J]. Sensors and Actuators A: Physical, 314, 112237(2020). http://www.sciencedirect.com/science/article/pii/S0924424720308037

    [8] Maier T, Brückl H. Wavelength-tunable microbolometers with metamaterial absorbers[J]. Optics Letters, 34, 3012-3014(2009). http://europepmc.org/abstract/MED/19794799

    [9] Liu R H, Zhao D P, Zhang J K et al. Preparation and characteristics of middle and far infrared stealth of photonic crystal film[J]. Acta Optica Sinica, 38, 0816001(2018).

    [10] Aydin K, Ferry V E, Briggs R M et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature Communications, 2, 517(2011).

    [11] Cong J W, Zhou Z Q, Yun B F et al. Broadband visible-light absorber via hybridization of propagating surface plasmon[J]. Optics Letters, 41, 1965-1968(2016). http://d.wanfangdata.com.cn/periodical/c9c0eaaa68d0a36c0c09535a47fd2e70

    [12] Jin X X, Lou Z K, Zhang H W et al. Random distributed feedback fiber laser at 2.1 μm[J]. Optics Letters, 41, 4923-4926(2016).

    [13] Wang H, Alshehri H, Su H et al. Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings with excellent thermal stability in air[J]. Solar Energy Materials and Solar Cells, 174, 445-452(2018).

    [14] Wu J B, Lin M L, Cong X et al. Raman spectroscopy of graphene-based materials and its applications in related devices[J]. Chemical Society Reviews, 47, 1822-1873(2018).

    [15] Hu E T, Liu X X, Yao Y et al. Multilayered metal-dielectric film structure for highly efficient solar selective absorption[J]. Materials Research Express, 5, 066428(2018).

    [16] Gao J X, Lan Y L, Wu J J. Magnetically tunable multi-band absorption of graphene based on photonic crystal heterostructure[J]. Chinese Journal of Luminescence, 41, 624-630(2020).

    [17] Palik E D[M]. Handbook of optical constants of solids(1998).

    [18] Sani E, Mercatelli L, Meucci M et al. Compositional dependence of optical properties of zirconium, hafnium and tantalum carbides for solar absorber applications[J]. Solar Energy, 131, 199-207(2016). http://www.sciencedirect.com/science/article/pii/S0038092X16001547

    [19] Jalsan K E, Soman R N, Flouri K et al. Layout optimization of wireless sensor networks for structural health monitoring[J]. Smart Structures and Systems, 14, 39-54(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=8b6ca7e8262f1e59f8a40bbd39693b07

    [20] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 25, 402-408(2001). http://www.researchgate.net/publication/209828613_analysis_of_relative_gene_expression_data_using_real-time_quantitative_pcr_and_the_2-ddct_method

    [21] Li S R, Liu K, Long X Y et al. Numerical study of infrared broadband multilayer film absorber with tunable structural colors[J]. Optics Communications, 459, 124950(2020). http://www.sciencedirect.com/science/article/pii/S0030401819310363

    [22] Wu D, Liu C, Liu Y M et al. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region[J]. Optics Letters, 42, 450-453(2017). http://www.ncbi.nlm.nih.gov/pubmed/28146499

    [23] Zhu L, Wang Y, Liu Y Y et al. Design and analysis of ultra broadband nano-absorber for solar energy harvesting[J]. Plasmonics, 13, 475-481(2018). http://link.springer.com/10.1007/s11468-017-0533-1

    [24] Gao H X, Peng W, Liang Y Z et al. Plasmonic broadband perfect absorber for visible light solar cells application[J]. Plasmonics, 15, 573-580(2020). http://link.springer.com/article/10.1007/s11468-019-01087-5

    [25] Hu E T, Yao Y, Zang K Y et al[J]. High photon-to-heat conversion efficiency in the wavelength region of 250--1200 nm based on a thermoelectric Bi2Te3 film structure Scientific Reports, 7, 44614.

    [26] Qin F, Chen X F, Yi Z et al. Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure[J]. Solar Energy Materials and Solar Cells, 211, 110535(2020). http://www.sciencedirect.com/science/article/pii/S0927024820301380

    [27] Liu G H, Chen T, Xu J L et al. Solar evaporation for simultaneous steam and power generation[J]. Journal of Materials Chemistry A, 8, 513-531(2020). http://pubs.rsc.org/en/content/articlelanding/2020/ta/c9ta12211g

    [28] Li J K, Chen X F, Yi Z et al. Broadband solar energy absorber based on monolayer molybdenum disulfide using tungsten elliptical arrays[J]. Materials Today Energy, 16, 100390(2020). http://www.sciencedirect.com/science/article/pii/S2468606920300095

    [29] Monier R, Griffin E, Gebran M et al. The chemical compositions of the two new HgMn stars HD 30085 and HD 30963: comparison to χ Lupi A, ν cap, and HD 174567[J]. The Astronomical Journal, 158, 157(2019). http://arxiv.org/abs/1908.05023v1

    [30] Khoza N, Nuru Z Y, Sackey J et al. Structural and optical properties of ZrOx/Zr/ZrOx/AlxOy multilayered coatings as selective solar absorbers[J]. Journal of Alloys and Compounds, 773, 975-979(2019). http://www.sciencedirect.com/science/article/pii/S0925838818335874

    [31] Trotter D M, Sievers A J. Spectral selectivity of high-temperature solar absorbers[J]. Applied Optics, 19, 711-728(1980). http://europepmc.org/abstract/MED/20220922

    [32] Gupta M C, Ungaro C. Foley IV J J, et al. Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion[J]. Solar Energy, 165, 100-114(2018). http://www.ingentaconnect.com/content/el/0038092x/2018/00000165/00000001/art00013

    [33] Rinnerbauer V, Lausecker E, Schäffler F et al. Nanoimprinted superlattice metallic photonic crystal as ultraselective solar absorber[J]. Optica, 2, 743-746(2015). http://www.opticsinfobase.org/abstract.cfm?uri=optica-2-8-743

    [34] Wang H, Chang J Y, Yang Y et al. Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters[J]. International Journal of Heat and Mass Transfer, 98, 788-798(2016). http://www.sciencedirect.com/science/article/pii/S0017931015313181

    Tiesheng Wu, Xueyu Wang, Huixian Zhang, Yiying Wang, Weiping Cao, Yiping Wang. Ultra-Broadband Perfect Absorber Based on Multilayered Zr/SiO2 Film[J]. Acta Optica Sinica, 2021, 41(5): 0516001
    Download Citation