• Acta Optica Sinica
  • Vol. 41, Issue 5, 0516001 (2021)
Tiesheng Wu1、2、3、*, Xueyu Wang1、**, Huixian Zhang1, Yiying Wang1, Weiping Cao1, and Yiping Wang2、3、***
Author Affiliations
  • 1Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing, College of Information and Communication, Guilin University of Electronic Technology, Guilin,Guangxi 541004, China
  • 2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • 3Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/AOS202141.0516001 Cite this Article Set citation alerts
    Tiesheng Wu, Xueyu Wang, Huixian Zhang, Yiying Wang, Weiping Cao, Yiping Wang. Ultra-Broadband Perfect Absorber Based on Multilayered Zr/SiO2 Film[J]. Acta Optica Sinica, 2021, 41(5): 0516001 Copy Citation Text show less
    Structural diagram of multilayered planar metal/dielectric ultra-broadband absorber
    Fig. 1. Structural diagram of multilayered planar metal/dielectric ultra-broadband absorber
    Absorption spectra of 10-layered Zr/SiO2 absorber
    Fig. 2. Absorption spectra of 10-layered Zr/SiO2 absorber
    Optical properties of absorbers for different metal films. (a) Absorption spectra; (b) normalized impedance
    Fig. 3. Optical properties of absorbers for different metal films. (a) Absorption spectra; (b) normalized impedance
    Relationship between each physical variable and wavelength. (a) Electric field intensity; (b) absorption intensity; (c) absorption efficiency of each metal layer
    Fig. 4. Relationship between each physical variable and wavelength. (a) Electric field intensity; (b) absorption intensity; (c) absorption efficiency of each metal layer
    Absorption spectra of absorbers with different film layer thicknesses. (a) h1; (b) h2; (c) h3; (d) h4; (e) h5; (f) h6; (g) h7; (h) h8
    Fig. 5. Absorption spectra of absorbers with different film layer thicknesses. (a) h1; (b) h2; (c) h3; (d) h4; (e) h5; (f) h6; (g) h7; (h) h8
    Absorption spectra of absorbers with different film layer numbers
    Fig. 6. Absorption spectra of absorbers with different film layer numbers
    Relationship between light absorption efficiency and incident angle under different polarization conditions. (a) TE polarization; (b) TM polarization
    Fig. 7. Relationship between light absorption efficiency and incident angle under different polarization conditions. (a) TE polarization; (b) TM polarization
    Relationship between temperature rise and each parameter. (a) Temperature rise versus luminous intensity for different incident wavelengths; (b) temperature rise versus incident wavelength for different luminous intensities
    Fig. 8. Relationship between temperature rise and each parameter. (a) Temperature rise versus luminous intensity for different incident wavelengths; (b) temperature rise versus incident wavelength for different luminous intensities
    Absorption spectrum of absorber, normalized solar radiation spectrum and normalized radiation spectra of black body at different temperatures
    Fig. 9. Absorption spectrum of absorber, normalized solar radiation spectrum and normalized radiation spectra of black body at different temperatures
    Layer number4681012
    h1 /nm229.9215.0136.7130.8130.3
    h2 /nm8.95.42.61.71.3
    h3 /nm222.6128.4115.9111.4108.4
    h4 /nm400.08.25.13.73.1
    h5 /nm112.8113.6115.8116.1
    h6 /nm400.08.76.35.1
    h7 /nm111.2114.3117.1
    h8 /nm400.011.08.2
    h9 /nm107.0113.7
    h10 /nm400.015.5
    h11 /nm102.3
    h12 /nm400.0
    Table 1. Structural parameters for realizing highest average absorption efficiency of absorbers with different layer numbers in range of 0.4--3.0 μm
    Layer number0.4--0.8 μm0.4--1.5 μm0.4--2.0 μm0.4--2.5 μm0.4--3.0 μm0.4--4.0 μm0.4--5.0 μm0.4--6.0 μm0.4--7.0 μm0.4--8.0 μm
    499.5[21]95.9[23]93.892.091.588.084.981.979.174.9
    699.6[24]99.0[25]98.7[26]97.395.594.6[27]92.991.388.786.8
    899.899.198.8[28]98.7[15]97.996.795.794.593.190.6
    1099.899.198.998.798.697.796.896.194.492.5
    1298.698.297.296.995.793.8
    1498.497.997.396.494.6
    1698.197.797.195.2
    1898.397.997.495.6
    2097.997.696.0
    2297.796.2
    2497.896.4
    Table 2. Relationship between optimal average absorption efficiency and layer number for each wavelength rangeunit: %
    Temperature /Kα-totalε-totalηT
    273.150.9720.0010.972
    10000.9720.5060.944
    13000.9720.6290.870
    15000.9720.6940.773
    Table 3. α-total
    Tiesheng Wu, Xueyu Wang, Huixian Zhang, Yiying Wang, Weiping Cao, Yiping Wang. Ultra-Broadband Perfect Absorber Based on Multilayered Zr/SiO2 Film[J]. Acta Optica Sinica, 2021, 41(5): 0516001
    Download Citation