• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 2, 137 (2020)
Yu-Zhe LIN1、2、3, Jeremy A. MASSENGALE2、4, Wen-Xiang HUANG2、4, Rui-Qing YANG2、*, Tetsuya D. MISHIMA4, and Michael B. SANTOS4
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
  • 2School of Electrical and Computer Engineering,University of Oklahoma,Norman 73019,USA
  • 3Center of Materials Science and Optoelectronics Engineering,University of the Chinese Academy of Sciences,Beijing 100049,China
  • 4Homer L. Dodge Department of Physics and Astronomy,University of Oklahoma,Norman 73019,USA
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.02.001 Cite this Article
    Yu-Zhe LIN, Jeremy A. MASSENGALE, Wen-Xiang HUANG, Rui-Qing YANG, Tetsuya D. MISHIMA, Michael B. SANTOS. Examination of the durability of interband cascade lasers against structural variations[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 137 Copy Citation Text show less
    References

    [1] R Q YANG. Infrared laser based on intersubband transitions in quantum wells. Superlattices and Microstructures, 17, 77-83(1995).

    [2] R Q YANG. in Semiconductor lasers: Fundamentals and applications, 487-513(2013).

    [3] I Vurgaftman, R Weih, M Kamp. Interband cascade lasers. : Appl. Phys, 48, 123001(2015).

    [4] I E Trofimov, C L Canedy, C S Kim. Interband cascade lasers with long lifetimes. Appl. Optics, 54, 9441-9445(2015).

    [5] L LI, H YE, Y C JIANG. MBE-grown long-wavelength interband cascade lasers on InAs substrates. J. Crystal Growth, 425, 369-372(2015).

    [6] R Q YANG, L LI, W X HUANG. InAs-based Interband Cascade Lasers. IEEE J. Selected Topics Quantum Electronics, 25, 1200108(2019).

    [7] J Koeth, R Weih, J Scheuermanna. Infrared Remote Sensing and Instrumentation XXV, San Diego, United States, 10403, 1040308(2017).

    [8] L Shterengas, G Kipshidze, T Hosoda. Cascade Pumping of 1.9-3.3 µm Type-I Quantum Well GaSb-based Diode Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-8(2017).

    [9] J Faist, F Capasso, D L Sivco. Quantum cascade laser. Science, 264, 553-556(1994).

    [10] D Jung, S R Bank, M L Lee. Next generation mid-infrared sources. . Opt, 19, 123001(2017).

    [11] R Q YANG, S S PEI. Novel type-II quantum cascade lasers. J. Appl. Phys, 79, 8197-8203(1996).

    [12] L LI, Y JIANG, H YE. Low-threshold InAs-based interband cascade lasers operating at high temperatures. Appl. Phys. Lett, 106, 251102(2015).

    [13] L Esaki, L L CHANG, E E Mendez. 532. Phys, 20, L529(1981).

    [14] J R Meyer, C A Hoffman, F J Bartoli. Type-II quantum-well lasers for the mid-wavelength infrared. Appl. Phys. Lett, 67, 757-759(1995).

    [15] R Q YANG, L LI, L H Zhao. 8640: paper 86400Q(2013).

    [16] C L Canedy, M V Warren, C D Merritt. Quantum Sensing and Nano Electronics and Photonics XIV, San Francisco, United States, 10111, 101110G(2017).

    [17] A Schade, S Höfling. Infrared Remote Sensing and Instrumentation XXV, San Diego, United States, 10403, 1040305(2017).

    [18] 18YANGR Q. Mid-infrared interband cascade lasers based on type-II heterostructures [J]. Microelectronics J., 1999, 30(10): 1043-1056;and references therein.

    [19] 19YANGR Q, BradshawJ L, BrunoJ D, et al. Mid-infrared type-II interband cascade lasers [J]. IEEE J. Quantum Electron., 2002, 38(6): 559-568;and references therein.

    Yu-Zhe LIN, Jeremy A. MASSENGALE, Wen-Xiang HUANG, Rui-Qing YANG, Tetsuya D. MISHIMA, Michael B. SANTOS. Examination of the durability of interband cascade lasers against structural variations[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 137
    Download Citation