• Opto-Electronic Engineering
  • Vol. 41, Issue 12, 7 (2014)
GUAN Yingjun1、*, XU Hong2, LI Zhilai2, GAO Xijun3, and YANG Liwei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2014.12.002 Cite this Article
    GUAN Yingjun, XU Hong, LI Zhilai, GAO Xijun, YANG Liwei. Design of Truss Support Structure for Large Off-axis Space Camera[J]. Opto-Electronic Engineering, 2014, 41(12): 7 Copy Citation Text show less
    References

    [1] CHANG Jun, WENG Zhicheng, JIANG Huilin, et al. Design of optical system for space camera with long focal length, wide coverage and high resolution[J]. Optics and Precision Engineering, 2003, 11(1): 55-58.

    [2] ZHANG Keke, RUAN Ningjuan, FU Danying. Analysis and consideration of development of overseas space off-axis TMA system camera[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(3): 63-70.

    [3] ZHANG Lei, JIA Xuezhi. Design and optimization of trussed supporting structure for off-axis three-mirror reflective space camera[J]. Optics and Precision Engineering, 2009, 17(3): 603-608.

    [4] LI Wei, LIU Hongwei, GUO Quanfeng, et al. Combined supporting structure of thin wall joint cylinder and supporting bar between primary mirror and second mirror in space camera[J]. Optics and Precision Engineering, 2010, 18(12): 2633-2641.

    [5] LI Wei, LIU Hongwei. Structure stability of precision component made of carbon fiber composite in space optical remote sensor[J]. Optics and Precision Engineering, 2008, 16(11): 2173-2179.

    [6] ZHANG Lei, JIN Guang. Design and test of supporting truss for light space remote sensor[J]. Optics and Precision Engineering, 2010, 18(5): 1099-1104.

    [7] FAN Bin, WANG Yan. Research on truss structure of foreign remote-sensing cameras with long focal length and high resolution[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(2): 35-41.

    [8] CHEN Zhiping, CHEN Zhiyuan, YANG Shimo. Modal analysis and experiment on the main truss of Space Solar Telescope[J]. Opto-Electronic Engineering, 2004, 31(12): 1-3.

    [9] O’Brien T P, Atwood B. Adjustable truss for support, optical alignment, and athermalization of a Schmidt camera[J]. Proc. of SPIE(S0277-786X), 2003, 4841: 403-410.

    [10] Stanley S. Smeltzer III. Development of bonded joint technology for a rigidizable-inflatable deployable truss[J]. Proc. of SPIE(S0277-786X), 2006, 6222: 622201-1-11.

    [11] YANG Liwei, LI Zhilai, BAO He. Design for structure of space camera based on the theory of statically determinate spatial frameworks[J]. Opto-Electronic Engineering, 2010, 37(11): 73-77.

    [12] CHEN Zhiping, YANG Shimo, HU Qiqian, et al. Mechanical analysis and optimization of the main truss in space solar telescope[J]. Chinese Journal of Computational Mechanics, 2005, 22(1): 89-94.

    [13] LIN Zaiwen, LIU Yongqi, LIANG Yan, et al. Application of carbon fiber reinforced composite to optical structure[J]. Optics and Precision Engineering, 2007, 15(8): 1181-1185.

    [14] XIN Hongwei, GUAN Yingjun, CHAI Fangmao. Design for main support of off-axis space remote sensor[J]. Optics and Precision Engineering, 2012, 20(6): 1257-1264.

    CLP Journals

    [1] XI Jiali, ZHANG Lei, XIE Peng, WEI Lei, KONG Lin. Optimization Design and Test of the Supporting Structure for the Off-axis Three-mirror Reflective Space Camera[J]. Opto-Electronic Engineering, 2016, 43(7): 45

    GUAN Yingjun, XU Hong, LI Zhilai, GAO Xijun, YANG Liwei. Design of Truss Support Structure for Large Off-axis Space Camera[J]. Opto-Electronic Engineering, 2014, 41(12): 7
    Download Citation