• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0112005 (2023)
Chenyang Wei, Qian Wang, and Honglu Hou*
Author Affiliations
  • School of Optoelectronic and Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi, China
  • show less
    DOI: 10.3788/LOP212833 Cite this Article Set citation alerts
    Chenyang Wei, Qian Wang, Honglu Hou. Simulation and Experimental Study of Doping Properties of a Silicon Wafer Using Optical Cavity Ring-Down Measurement Method[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0112005 Copy Citation Text show less
    References

    [1] Wang D, Wang X D, Ma H et al. Progress of doping in Ga2O3 materials[J]. Laser & Optoelectronics Progress, 58, 1516025(2021).

    [2] Wang R, Niu L G, He Y et al. Research of four-probe method for semiconductor doping concentration experiment[J]. Journal of Jilin University (Information Science Edition), 37, 507-511(2019).

    [3] Yang H Q, Yan J H, Chen J et al. Application of secondary ion mass spectrometry and spreading resistance probe technique for measuring depth profile of boron implanted in silicon and estimation of resolution of spreading resistance probe technique[J]. Chinese Journal of Semiconductors, 24, 290-297(2003).

    [4] Arora A, Drummond P J, Ruzyllo J. Electrical characterization of silicon-on-insulator wafers using photo-conductance decay (PCD) method[J]. ECS Journal of Solid State Science and Technology, 5, P3069-P3072(2015).

    [5] Sun Q M, Melnikov A, Wang J et al. Simultaneous determination of effective carrier lifetime and resistivity of Si wafers using the nonlinear nature of photocarrier radiometric signals[J]. Journal of Physics D: Applied Physics, 51, 15LT01(2018).

    [6] Song P, Melnikov A, Sun Q M et al. Contactless non-destructive imaging of doping density and electrical resistivity of semiconductor Si wafers using lock-in carrierography[J]. Semiconductor Science and Technology, 33, 12LT01(2018).

    [7] Wang Q, Liu W G, Gong L et al. Determination of doping concentration of heavily doped silicon wafers using photon reabsorption in photocarrier radiometry[J]. AIP Advances, 10, 035118(2020).

    [8] Lim S Y, Macdonald D. Measuring dopant concentrations in p-type silicon using iron-acceptor pairing monitored by band-to-band photoluminescence[J]. Solar Energy Materials and Solar Cells, 95, 2485-2489(2011).

    [9] Lim S Y, Phang S P, Trupke T et al. Dopant concentration imaging in crystalline silicon wafers by band-to-band photoluminescence[J]. Journal of Applied Physics, 110, 113712(2011).

    [10] Giesecke J A, Schubert M C, Warta W. Measurement of net dopant concentration via dynamic photoluminescence[J]. Journal of Applied Physics, 112, 063704(2012).

    [11] Saldutti M, Tibaldi A, Cappelluti F et al. Impact of carrier transport on the performance of QD lasers on silicon: a drift-diffusion approach[J]. Photonics Research, 8, 1388-1397(2020).

    [12] Huang Q K, Yu H, Zhang Q et al. Thermally enhanced responsivity in an all-silicon optical power monitor based on defect-mediated absorption[J]. Photonics Research, 9, 2205-2213(2021).

    [13] Morville J, Romanini D. Sensitive birefringence measurement in a high-finesse resonator using diode laser optical self-locking[J]. Applied Physics B, 74, 495-501(2002).

    [14] Zhou S, Han Y L, Li B C. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection[J]. Applied Physics B, 124, 1-8(2018).

    [15] Cassar N, Tang W Y, Gabathuler H et al. Method for high frequency underway N2 fixation measurements: flow-through incubation acetylene reduction assays by cavity ring down laser absorption spectroscopy (FARACAS)[J]. Analytical Chemistry, 90, 2839-2851(2018).

    [16] Sanders S E, Willis O R, Nahler N H et al. Absolute fluorescence and absorption measurements over a dynamic range of 106 with cavity-enhanced laser-induced fluorescence[J]. The Journal of Chemical Physics, 149, 014201(2018).

    [17] Egashira K. Optimal mirror reflectivity for transparency of a thin-film absorbent in a Fabry-Perot cavity[J]. Optical Review, 22, 888-892(2015).

    [18] Qu Z C, Li B C, Han Y L. Influence of test mirror’s misalignment on high reflectivity measurement with cavity ring-down technique[J]. Acta Photonica Sinica, 40, 1366-1371(2011).

    [19] Yi H Y, Lü B D, Hu X Y et al. Influence of length misadjustment on metrical precision by cavity ring-down method[J]. High Power Laser & Particle Beams, 16, 993-996(2004).

    [20] Yi H Y, Lü B D, Zhang K. Analysis of cavity mirrors’ tilt in ring-down cavity[J]. Laser Technology, 30, 5-8(2006).

    [21] Xu Y Y, Yu J, Mo Z Q et al. Advances in cavity ring-down absorption spectroscopy research and typical applications[J]. Laser & Optoelectronics Progress, 58, 1900001(2021).

    [22] Du X H. Study on high reflectivity measurement method based on coupled cavity ring-down technology[D](2020).

    [23] Yin X, Wan S P, Xiong X Z et al. Study of a optical fiber acoustic sensing system based on F-P microcavity structure[J]. Laser & Optoelectronics Progress, 58, 0312003(2021).

    [24] Xue Y. Study on cavity adjustment method of cavity ring-down high reflectivity measurement[D](2020).

    [25] Liu G S, Xiong X, Hu S Q et al. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photonics Research, 8, 448-456(2020).

    [26] Terasaki A, Kondow T, Egashira K. Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry-Perot cavity containing a transparent substrate[J]. Journal of the Optical Society of America B, 22, 675-686(2005).

    [27] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).

    [28] Qu Z C. Study on theory and application of cavity ring-down technique[D](2016).

    [29] Baker-Finch S C, McIntosh K R, Yan D et al. Near-infrared free carrier absorption in heavily doped silicon[J]. Journal of Applied Physics, 116, 063106(2014).

    Chenyang Wei, Qian Wang, Honglu Hou. Simulation and Experimental Study of Doping Properties of a Silicon Wafer Using Optical Cavity Ring-Down Measurement Method[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0112005
    Download Citation