• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 5, 543 (2017)
LIU Qiang1、2, CAI Jian-Hui1、2, HE Jia-Zhu3, WANG Yi-Ze2, ZHANG Dong-Liang2, LIU Chang2, REN Wei1, YU Wen-Jie2, LIU Xin-Ke3, and ZHAO Qing-Tai4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.05.06 Cite this Article
    LIU Qiang, CAI Jian-Hui, HE Jia-Zhu, WANG Yi-Ze, ZHANG Dong-Liang, LIU Chang, REN Wei, YU Wen-Jie, LIU Xin-Ke, ZHAO Qing-Tai. 86 mV/dec subthreshold swing of back-gated MoS2 FET on SiO2[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 543 Copy Citation Text show less
    References

    [1] Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors [J]. Acs Nano, 2011, 5(10):7707.

    [2] Chen Min-Cheng, Lin Chia-Yi, Li Kai-Hsin, et al. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for V th matching and CMOS-compatible 3DFETs [C]. Electron Devices Meeting (IEDM), 2014 IEEE International 2014:33.5.1.

    [3] Desai S B, Madhvapathy S R, Sachid A B, et al. MoS2 transistors with 1-nanometer gate lengths [J]. Science, 2016, 354(6308):99.

    [4] Jin K, Xie L M, Tian Y, et al. Au-Modified Monolayer MoS2 Sensor for DNA Detection [J]. Journal of Physical Chemistry C, 2016, 120(20):11204.

    [5] Ye Lei, Li Hao, Chen Zefeng, et al. Near-infrared photodetector based on MoS2/black phosphorus heterojunction[J]. ACS Photonics, 2016, 3(4):692-699.

    [6] Pu Jiang, Yomogida Y, Liu Keng-Ku, et al. Highly flexible MoS2 thin-film transistors with ion gel dielectrics [J]. Nano Lett, 2012, 12(8):4013.

    [7] Salvatore G A, Munzenrieder N, Barraud C, et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate [J]. Acs Nano, 2013, 7(10):8809.

    [8] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors [J]. Nat Nanotechnol, 2011, 6(3):147.

    [9] Das S, Appenzeller J. Screening and interlayer coupling in multilayer MoS2 [J]. Physica Status Solidi-Rapid Research Letters, 2013, 7(4):268.

    [10] Jena D, Konar A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering [J]. Phys Rev Lett, 2007, 98(13):136805.

    [11] Splendiani A, Sun Liang, Zhang Yuan-Bo, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Lett, 2010, 10(4):1271.

    [12] Jariwala D, Sangwan V K, Late D J, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors [J]. Applied Physics Letters, 2013, 102(17):173107.

    [13] Pradhan N R, Rhodes D, Zhang Q, et al. Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 [J]. Applied Physics Letters, 2013, 102(12):123105.

    [14] Min S-W, Lee H S, Choi H J, et al. Nanosheet thickness-modulated MoS2 dielectric property evidenced by field-effect transistor performance [J]. Nanoscale, 2013, 5(2):548.

    [15] Radisavljevic B, Radenovic A, Brivio J, et al. Single-Layer MoS2 Transistors [J]. Nat. Nanotechnol, 2011, 6:147.

    [16] Li Tao, Wan Ben-Song, Du Gang, et al. Electrical performance of multilayer MoS2 transistors on high-k Al2O3 coated Si substrates [J]. AIP Advances, 2015, 5(5):057102.

    [17] Bao Wen-Zhong, Cai Xing-Han, Kim D, et al. High mobility ambipolar MoS2 field-effect transistors:Substrate and dielectric effects [J]. Applied Physics Letters, 2013, 102(4):042104.

    [18] Ganapathi K L, Bhattacharjee S, Mohan S, et al. High-Performance HfO2 Back Gated Multilayer MoS2 Transistors [J]. IEEE Electron Device Letters, 2016, 37(6):797.

    [19] Das S, Chen Hong-Yan, Penumatcha A V, et al. High performance multilayer MoS2 transistors with scandium contacts [J]. Nano Lett, 2013, 13(1):100.

    [20] Ma Nan, Jena D. Charge Scattering and Mobility in Atomically Thin Semiconductors [J]. Physical Review X, 2014, 4(1):011043.

    [21] Wang Feng-Lin, Stepanov P, Gray M, et al. Annealing and transport studies of suspended molybdenum disulfide devices [J]. Nanotechnology, 2015, 26(10):105709.

    [22] Qiu Hao, Pan Li-Jia, Yao Zong-Ni, et al. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances [J]. Applied Physics Letters, 2012, 100(12):123104.

    [23] Yang S, Park S, Jang S, et al. Electrical stability of multilayer MoS2 field‐effect transistor under negative bias stress at various temperatures [J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2014, 8(8):714.

    [24] Wu Wei, De D, Chang Su-Chi, et al. High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains [J]. Applied Physics Letters, 2013, 102(14):142106.

    [25] Das S, Appenzeller J. Evaluating the scalability of multilayer MoS2 transistors [C]. Device Research Conference (DRC), 2013 71st Annual 2013:153.

    [26] Yuan Hui, Cheng Guang-Jun, You Lin, et al. Influence of metal–MoS2 interface on MoS2 transistor performance:Comparison of Ag and Ti contacts [J]. ACS applied materials & interfaces, 2015, 7(2):1180.

    [27] Ly T H, Perello D J, Zhao Jiong, et al. Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries [J]. Nat Commun, 2016, 7:10426.

    [28] Yoo G, Lee S, Yoo B, et al. Electrical contact analysis of multilayer MoS2 transistor with molybdenum source/drain electrodes [J]. IEEE Electron Device Letters, 2015, 36(11):1215.

    [29] Park Y, Baac H W, Heo J, et al. Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors [J]. Applied Physics Letters, 2016, 108(8):083102.

    [30] Kolla L G, Bhattacharjee S, S M, et al. High Performance HfO2 Back Gated Multilayer MoS2 transistors [J]. IEEE Electron Device Letters, 2016:1.

    [31] Sze S M, Ng K K. Physics of semiconductor devices [M].John wiley & sons, 2006.

    [32] Wen Ming, Xu Jing-Ping, Liu Lu, et al. Improved Electrical Performance of Multilayer MoS2 Transistor With NH 3-Annealed ALD HfTiO Gate Dielectric [J]. IEEE Transactions on Electron Devices, 2017, 64(3):1020.

    [33] Cheng Zhi-Hui, Cardenas J A, McGuire F, et al. Modifying the Ni-MoS2 Contact Interface Using a Broad-Beam Ion Source [J]. IEEE Electron Device Letters, 2016, 37(9):1234.

    [34] Ghibaudo G. New method for the extraction of MOSFET parameters [J]. Electronics Letters, 1988, 24(9):543.

    [35] Na Jun-Hong, Shin M, Joo M K, et al. Separation of interlayer resistance in multilayer MoS2 field-effect transistors [J]. Applied Physics Letters, 2014, 104(23):233502.

    [36] Lee H S, Min S W, Chang Y G, et al. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap [J]. Nano Letters, 2012, 12(7):3695.

    [37] Esmaeili-Rad M R, Salahuddin S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector [J]. Sci Rep, 2013, 3:2345.

    [38] Yoon J, Park W, Bae G Y, et al. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes [J]. Small, 2013, 9(19):3295.

    [39] Liu Wei, Kang Jia-Hao, Cao Wei, et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance [C]. Electron Devices Meeting (IEDM), 2013 IEEE International 2013:19.4.1.

    [40] Joo M K, Moon B H, Ji H, et al. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure [J]. Nano Lett, 2016, 16(10):6383.

    [41] English C D, Shine G, Dorgan V E, et al. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition [J]. Nano Lett, 2016, 16(6):3824.

    [42] Cheng Zhi-Hui, Cardenas J A, McGuire F, et al. Using Ar Ion beam exposure to improve contact resistance in MoS2 FETs [C]. Device Research Conference (DRC), 2016 74th Annual 2016:1.

    [43] Late D J, Liu Bin, Matte H S, et al. Hysteresis in single-layer MoS2 field effect transistors [J]. Acs Nano, 2012, 6(6):5635.

    [44] Li Tao, Du Gang, Zhang Bao-Shun, et al. Scaling behavior of hysteresis in multilayer MoS2 field effect transistors [J]. Applied Physics Letters, 2014, 105(9):093107.

    [45] Cho K, Park W, Park J, et al. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors [J]. Acs Nano, 2013, 7(9):7751.

    [46] Kiriya D, Tosun M, Zhao Pei-Da, et al. Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen [J]. Journal of the American Chemical Society, 2014, 136(22):7853.

    [47] Houssa M, Tuominen M, Naili M, et al. Trap-assisted tunneling in high permittivity gate dielectric stacks [J]. Journal of Applied Physics, 2000, 87(12):8615.

    [48] Yang Wen, Sun Qing-Qing, Geng Yang, et al. The Integration of Sub-10 nm Gate Oxide on MoS2 with Ultra Low Leakage and Enhanced Mobility [J]. Sci Rep, 2015, 5:11921.

    [49] Wang Xiao, Zhang Tian-Bo, Yang Wen, et al. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment [J]. Applied Physics Letters, 2017, 110(5):053110.

    [50] Kwon H-J, Jang J, Kim S, et al. Electrical characteristics of multilayer MoS2 transistors at real operating temperatures with different ambient conditions [J]. Applied Physics Letters, 2014, 105(15):152105.

    [51] Roh J, Lee J-H, Jin S H, et al. Negligible hysteresis of molybdenum disulfide field-effect transistors through thermal annealing [J]. Journal of Information Display, 2016, 17(3):103.

    [52] Chang H Y, Yang Shi-Xuan, Lee J, et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems [J]. Acs Nano, 2013, 7(6):5446.

    [53] Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals [J]. Nat Commun, 2012, 3:1011.

    [54] Takenaka M, Ozawa Y, Han J, et al. Quantitative evaluation of energy distribution of interface trap density at MoS2 MOS interfaces by the Terman method [C]. Electron Devices Meeting (IEDM), 2016 IEEE International 2016:5.8. 1.

    [55] Wen Ming, Xu Jing-Ping, Liu Lu, et al. Effects of annealing on electrical performance of multilayer MoS2 transistors with atomic layer deposited HfO2 gate dielectric [J]. Applied Physics Express, 2016, 9(9):095202.

    [56] Arora H, Seifert G, Cuniberti G, et al. Electrical characterization of two-dimensional materials and their heterostructures [C]. Radio and Antenna Days of the Indian Ocean (RADIO), 2016 IEEE 2016:1.

    [57] Kang Jia-Hao, Liu Wei, Banerjee K. High-performance MoS2 transistors with low-resistance molybdenum contacts [J]. Applied Physics Letters, 2014, 104(9):093106.

    [58] Kobayashi T, Hori N, Nakajima T, et al. Electrical characteristics of MoS2 field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene copolymer gate structure [J]. Applied Physics Letters, 2016, 108(13):132903. .

    [59] Ko C, Lee Y, Chen Ya-Bin, et al. Ferroelectrically Gated Atomically Thin Transition-Metal Dichalcogenides as Nonvolatile Memory[J]. Advanced Materials, 2016.

    LIU Qiang, CAI Jian-Hui, HE Jia-Zhu, WANG Yi-Ze, ZHANG Dong-Liang, LIU Chang, REN Wei, YU Wen-Jie, LIU Xin-Ke, ZHAO Qing-Tai. 86 mV/dec subthreshold swing of back-gated MoS2 FET on SiO2[J]. Journal of Infrared and Millimeter Waves, 2017, 36(5): 543
    Download Citation