• Photonics Research
  • Vol. 9, Issue 3, 416 (2021)
Zachary N. Coker1、2, Xiao-Xuan Liang3, Allen S. Kiester4, Gary D. Noojin2, Joel N. Bixler4, Bennett L. Ibey4, Alfred Vogel3, and Vladislav V. Yakovlev1、5、*
Author Affiliations
  • 1Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
  • 2SAIC, Ft. Sam Houston, Texas 78234, USA
  • 3Institut für Biomedizinische Optik, Universität zu Lübeck, 23562 Lübeck, Germany
  • 4Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234, USA
  • 5Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
  • show less
    DOI: 10.1364/PRJ.411980 Cite this Article Set citation alerts
    Zachary N. Coker, Xiao-Xuan Liang, Allen S. Kiester, Gary D. Noojin, Joel N. Bixler, Bennett L. Ibey, Alfred Vogel, Vladislav V. Yakovlev. Synergistic effect of picosecond optical and nanosecond electrical pulses on dielectric breakdown in aqueous solutions[J]. Photonics Research, 2021, 9(3): 416 Copy Citation Text show less
    References

    [1] K. G. McKay. Avalanche breakdown in silicon. Phys. Rev., 94, 877-884(1954).

    [2] L. Keldysh. Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP, 20, 1307-1314(1965).

    [3] R. R. Alfano, S. L. Shapiro. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett., 24, 592-594(1970).

    [4] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, F. Kautek. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 80, 4076-4079(1998).

    [5] A. Vogel, N. Linz, S. Freidank, G. Paltauf. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery. Phys. Rev. Lett., 100, 038102(2008).

    [6] A. A. Manenkov, A. M. Prokhorov. Laser-induced damage in solids. Sov. Phys. Usp., 29, 104-122(1986).

    [7] P. K. Kennedy. A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: part I—theory. IEEE J. Quantum Electron., 31, 2241-2249(1995).

    [8] D. Hammer, R. Thomas, G. Noojin, B. Rockwell, P. Kennedy, W. Roach. Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media. IEEE J. Quantum Electron., 32, 670-678(1996).

    [9] K. Nahen, A. Vogel. Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses –part II: transmission, scattering, and reflection. IEEE J. Sel. Top. Quantum Electron., 2, 861-871(1996).

    [10] B. A. Rockwell, R. J. Thomas, A. Vogel. Ultrashort laser pulse retinal damage mechanisms and their impact on thresholds. Med. Laser Appl., 25, 84-92(2010).

    [11] N. Linz, S. Freidank, X. X. Liang, H. Vogelmann, T. Trickl, A. Vogel. Wavelength dependence of nanosecond infrared laser-induced breakdown in water: evidence for multiphoton initiation via an intermediate state. Phys. Rev. B, 91, 134114(2015).

    [12] N. Linz, S. Freidank, X. X. Liang, A. Vogel. Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery. Phys. Rev. B, 94, 024113(2016).

    [13] N. Bloembergen. Laser-induced electric breakdown in solids. IEEE J. Quantum Electron., 10, 375-386(1974).

    [14] J. M. Wiesenfeld, E. P. Ippen. Dynamics of electron solvation in liquid water. Chem. Phys. Lett., 73, 47-50(1980).

    [15] Z. Zhu, A. Chutia, H. Tsuboi, M. Koyama, A. Endou, H. Takaba, M. Kubo, C. A. D. Carpio, P. Selvam, A. Miyamoto. Theoretical simulation of dielectric breakdown by molecular dynamics and tight-binding quantum chemistry methods. Jpn. J. Appl. Phys., 46, 1853-1858(2007).

    [16] B. Rethfeld. Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett., 92, 187401(2004).

    [17] B. Rethfeld. Free-electron generation in laser-irradiated dielectrics. Phys. Rev. B, 73, 035101(2006).

    [18] B. H. Christensen, P. Balling. Modeling ultrashort-pulse laser ablation of dielectric materials. Phys. Rev. B, 79, 155424(2009).

    [19] K. Wædegaard, D. B. Sandkamm, L. Haahr-Lillevang, K. G. Bay, P. Balling. Modeling short-pulse laser excitation of dielectric materials. Appl. Phys. A, 117, 7-12(2014).

    [20] B. Gorshkov, A. Epifanov, A. A. Manenkov, A. Panov. Studies of laser-produced damage to transparent optical material in the UV region and in crossed UV-IR beams. Proceedings of the 13th Annual Symposium on Optical Materials for High Power Lasers, 76-86(1981).

    [21] A. Robledo-Martinez, H. M. Sobral, L. A. Garcia-Villarreal. Signal enhancement in laser-induced breakdown spectroscopy using gated high-voltage pulses. IEEE Trans. Plasma Sci., 46, 2392-2396(2018).

    [22] R. A. Mullen, J. N. Matossian. Quenching optical breakdown with an applied electric field. Opt. Lett., 15, 601-603(1990).

    [23] E. Y. Loktionov, N. A. Pasechnikov, A. V. Pavlov, Y. S. Protasov, V. D. Telekh. Investigation of electrooptical breakdown threshold in gas mixtures of complex chemical composition. J. Phys. Conf. Ser., 652, 012043(2015).

    [24] E. Takahashi, S. Kato. Influence of DC electric field on Nd:YAG laser-induced breakdown in gases. OSA Contin., 3, 3030-3039(2020).

    [25] J. Tulip, H. Seguin. Influence of a transverse electric field on laser-induced gas breakdown. Appl. Phys. Lett., 23, 135-136(1973).

    [26] N. Kroll, K. M. Watson. Theoretical study of ionization of air by intense laser pulses. Phys. Rev. A, 5, 1883-1905(1972).

    [27] H. S. Smalø, Ø. Hestad, S. Ingebrigtsen, P. O. Åstrand. Field dependence on the molecular ionization potential and excitation energies compared to conductivity models for insulation materials at high electric fields. J. Appl. Phys., 109, 073306(2011).

    [28] A. Vogel, J. Noack, G. Hüttman, G. Paltauf. Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B, 81, 1015-1047(2005).

    [29] X.-X. Liang, Z. Zhang, A. Vogel. Multi-rate-equation modeling of the energy spectrum of laser-induced conduction band electrons in water. Opt. Express, 27, 4672-4693(2019).

    [30] F. Williams, S. P. Varma, S. Hillenius. Liquid water as a lone-pair amorphous semiconductor. J. Chem. Phys., 64, 1549-1554(1976).

    [31] P. Vanraes, A. Bogaerts. Plasma physics of liquids—a focused review. Appl. Phys. Rev., 5, 031103(2018).

    [32] C. DeMichelis. Laser induced gas breakdown: a bibliographical review. IEEE J. Quantum Electron., 5, 188-202(1969).

    [33] L. Keldysh. The effect of a strong electric field on the optical properties of insulating crystals. JETP, 34, 788-790(1958).

    [34] B. L. Ibey, S. Xiao, K. H. Schoenbach, M. R. Murphy, A. G. Pakhomov. Plasma membrane permeabilization by 60- and 600-ns electric pulses is determined by the absorbed dose. Bioelectromagnetics, 30, 92-99(2009).

    [35] C. Cain, G. Noojin, L. Manning. A comparison of various probit methods for analyzing yes/no data on a log scale(1996).

    [36] T. Kovalchuk, G. Toker, V. Bulatov, I. Schechter. Laser breakdown in alcohols and water induced by λ = 1064 nm nanosecond pulses. Chem. Phys. Lett., 500, 242-250(2010).

    [37] B. Varghese, S. Turco, V. Bonito, R. Verhagen. Effects of polarization and apodization on laser induced optical breakdown threshold. Opt. Express, 21, 18304-18310(2013).

    [38] C. A. Sacchi. Laser-induced electric breakdown in water. J. Opt. Soc. Am. B, 8, 337-345(1991).

    [39] A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, R. Birngruber. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B, 68, 271-280(1999).

    [40] C. C. Roth, R. A. Barnes, B. L. Ibey, H. T. Beier, L. C. Mimun, S. M. Maswadi, M. Shadaram, R. D. Glickman. Characterization of pressure transients generated by nanosecond electrical pulse (nsEP) exposure. Sci. Rep., 5, 15063(2015).

    [41] D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov. Two-photon ionization and dissociation of liquid water by powerful laser UV radiation. Chem. Phys., 77, 131-143(1983).

    [42] D. W. Shoesmith, W. Lee. The ionization constant of heavy water (D2O) in the temperature range 298 to 523 K. Can. J. Chem., 54, 3553-3558(1976).

    [43] G. A. Vidulich, D. F. Evans, R. L. Kay. The dielectric constant of water and heavy water between 0 and 40 degree. J. Phys. Chem., 71, 656-662(1967).

    [44] G. V. Prakash, R. Kumar, K. Saurabh, , V. P. Anitha, M. B. Chowdhuri, A. Shyam. Comparative study of electrical breakdown properties of deionized water and heavy water under pulsed power conditions. Rev. Sci. Instrum., 87, 015115(2016).

    [45] C. F. Perry, P. Zhang, F. B. Nunes, I. Jordan, A. von Conta, H. J. Wörner. Ionization energy of liquid water revisited. J. Phys. Chem. Lett., 11, 1789-1794(2020).

    [46] M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, A. Ben-Yakar. Functional regeneration after laser axotomy. Nature, 432, 822(2004).

    [47] E. Wenande, R. R. Anderson, M. Haedersdal. Fundamentals of fractional laser-assisted drug delivery: an in-depth guide to experimental methodology and data interpretation. Adv. Drug Delivery Rev., 153, 169-184(2020).

    [48] G. Campargue, B. Zielinski, S. Courvoisier, C. Sarpe, T. Winkler, A. Sentfleben, L. Bonacina, T. Baumert, J. P. Wolf. Live cells assessment of opto-poration by a single femtosecond temporal Airy laser pulse. AIP Adv., 8, 125105(2018).

    [49] H. Schneckenburger. Laser-assisted optoporation of cells and tissues–a mini-review. Biomed. Opt. Express, 10, 2883-2888(2019).

    [50] S. Patskovsky, M. Qi, M. Meunier. Single point single-cell nanoparticle mediated pulsed laser optoporation. Analyst, 145, 523-529(2020).

    Zachary N. Coker, Xiao-Xuan Liang, Allen S. Kiester, Gary D. Noojin, Joel N. Bixler, Bennett L. Ibey, Alfred Vogel, Vladislav V. Yakovlev. Synergistic effect of picosecond optical and nanosecond electrical pulses on dielectric breakdown in aqueous solutions[J]. Photonics Research, 2021, 9(3): 416
    Download Citation