• Chinese Optics Letters
  • Vol. 19, Issue 5, 052601 (2021)
Chunhao Liang1, Yashar E. Monfared2, Xin Liu1, Baoxin Qi1, Fei Wang3、*, Olga Korotkova4、**, and Yangjian Cai1、3、***
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 2Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
  • 3School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 4Department of Physics, University of Miami, Coral Gables, Florida 33146, USA
  • show less
    DOI: 10.3788/COL202119.052601 Cite this Article Set citation alerts
    Chunhao Liang, Yashar E. Monfared, Xin Liu, Baoxin Qi, Fei Wang, Olga Korotkova, Yangjian Cai. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chinese Optics Letters, 2021, 19(5): 052601 Copy Citation Text show less
    References

    [1] J. W. Goodman. Statistical Optics(2000).

    [2] F. Rojak. Two-point resolution with partially coherent light(1961).

    [3] D. N. Grimes, B. J. Thompson. Two-point resolution with partially coherent light. J. Opt. Soc. Am., 57, 1330(1967).

    [4] B. J. Thompson. Image formation with partially coherent light. Prog. Opt., 7, 169(1969).

    [5] J. Garcia-Sucerquia, R. Castaneda. Spatial partially coherent imaging. J. Mod. Opt., 49, 2093(2002).

    [6] R. Castaneda. Phase space representation of spatially coherent imaging. Appl. Opt., 47, E53(2008).

    [7] T. Nakamura, C. Chang. Exact space invariant illumination for partially coherent imaging systems. J. Opt. Soc. Am. A, 27, 1953(2010).

    [8] K. Yamazoe. Two models for partially coherent imaging. Opt. Lett., 29, 2591(2012).

    [9] K. Yamazoe. Coherency matrix formulation for partially coherent imaging to evaluate the degree of coherence for image. J. Opt. Soc. Am. A, 29, 1529(2012).

    [10] S. A. Ponomarenko. Self-imaging of partially coherent light in graded-index media. Opt. Lett., 40, 566(2015).

    [11] A. S. Ostrovsky, O. Ramos-Romero, M. V. Rodriguez-Solfs. Coherent-mode representation of partially coherent imagery. Opt. Rev., 3, 492(1996).

    [12] J. van der Gracht. Simulation of partially coherent imaging by outer-product expansion. Appl. Opt., 33, 3725(1994).

    [13] K. Yamazoe. Computation theory of partially coherent imaging by stacked pupil shift matrix. J. Opt. Soc. Am. A, 25, 3111(2008).

    [14] M. Singh, H. Lajunen, J. Tervo, J. Turunen. Imaging with partially coherent light: elementary-field approach. Opt. Express, 23, 28132(2015).

    [15] Z. Tong, O. Korotkova. Beyond the classical Rayleigh limit with twisted light. Opt. Lett., 37, 2595(2012).

    [16] D. P. Brown, T. G. Brown. Partially correlated azimuthal vortex illumination: coherence and correlation measurements and effects in imaging. Opt. Express, 16, 20418(2008).

    [17] C. Liang, G. Wu, F. Wang, W. Li, Y. Cai, S. A. Ponomarenko. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt. Express, 25, 28352(2017).

    [18] O. Korotkova. Random Beams: Theory and Applications(2013).

    [19] F. Gori, M. Santarsiero. Devising genuine spatial correlation functions. Opt. Lett., 32, 3531(2007).

    [20] H. Lajunen, T. Saastamoinen. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett., 36, 4104(2011).

    [21] S. Sahin, O. Korotkova. Light sources generating far fields with tunable flat profiles. Opt. Lett., 37, 2970(2012).

    [22] L. Ma, S. A. Ponomarenko. Optical coherence gratings and lattices. Opt. Lett., 39, 6656(2014).

    [23] Z. Mei, O. Korotkova. Random sources for rotating spectral densities. Opt. Lett., 42, 255(2017).

    [24] M. W. Hyde. Partially coherent sources generated from the incoherent sum of fields containing random-width Bessel function. Opt. Lett., 44, 1603(2019).

    [25] Z. Mei. Hyperbolic sine-correlated beams. Opt. Express, 27, 7491(2019).

    [26] M. Hyde, S. Bose-Pillai, D. G. Voelz, X. Xiao. Generation of vector partially coherent optical sources using phase-only spatial light modulators. Phys. Rev. Appl., 6, 064030(2016).

    [27] Y. Chen, J. Gu, F. Wang, Y. Cai. Self-splitting properties of a Hermite–Gaussian correlated Schell-model beam. Phys. Rev. A, 91, 013823(2015).

    [28] Y. Chen, S. A. Ponomarenko, Y. Cai. Self-steering partially coherent beams. Sci. Rep., 7, 39957(2017).

    [29] S. Avramov-Zamurovic, C. Nelson, S. Guth, O. Korotkova. Flat-ness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air. Appl. Opt., 55, 3442(2016).

    [30] Y. Zhou, H. Xu, Y. Yuan, J. Peng, J. Qu, W. Huang. Trapping two types of particles using a Laguerre–Gaussian correlated Schell-model beam. IEEE Photon. J., 8, 6600710(2016).

    [31] T. Wu, C. Liang, F. Wang, Y. Cai. Shaping the intensity and degree of coherence of a partially coherent beam by a 4f optical system with an amplitude filter. J. Opt., 19, 124010(2017).

    [32] O. Korotkova, X. Chen. Phase structuring of the complex degree of coherence. Opt. Lett., 43, 4727(2018).

    [33] X. Chen, O. Korotkova. Phase structuring of 2D complex coherence states. Opt. Lett., 44, 2470(2019).

    [34] Y. Gu, G. Gbur. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence. J. Opt. Soc. Am. A, 27, 2621(2010).

    [35] M. Santrasiero, R. Martinez-Herrero, D. Maluenda, J. C. G. Sande, G. Piquero, F. Gori. Partially coherent sources with circular coherence. Opt. Lett., 42, 1512(2017).

    [36] Y. Cai, Y. Chen, F. Wang. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review. J. Opt. Soc. Am. A, 31, 2083(2014).

    Data from CrossRef

    [1] Rosario Martínez-Herrero, Massimo Santarsiero, Gemma Piquero, Juan Carlos González de Sande. A New Type of Shape-Invariant Beams with Structured Coherence: Laguerre-Christoffel-Darboux Beams. Photonics, 8, 134(2021).

    Chunhao Liang, Yashar E. Monfared, Xin Liu, Baoxin Qi, Fei Wang, Olga Korotkova, Yangjian Cai. Optimizing illumination’s complex coherence state for overcoming Rayleigh’s resolution limit[J]. Chinese Optics Letters, 2021, 19(5): 052601
    Download Citation