
Optimizing illumination’s complex coherence state for
overcoming Rayleigh’s resolution limit

Chunhao Liang (梁春豪)1, Yashar E. Monfared2, Xin Liu (刘 欣)1, Baoxin Qi (齐宝鑫)1, Fei Wang (王 飞)3*,
Olga Korotkova4**, and Yangjian Cai (蔡阳健)1,3***

1 Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device,
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
2 Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
3 School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University,
Suzhou 215006, China
4 Department of Physics, University of Miami, Coral Gables, Florida 33146, USA

*Corresponding author: fwang@suda.edu.cn

**Corresponding author: o.korotkova@miami.edu

***Corresponding author: yangjiancai@suda.edu.cn
Received July 16, 2020 | Accepted November 8, 2020 | Posted Online February 3, 2021

We suggest tailoring of the illumination’s complex degree of coherence for imaging specific two- and three-point objects
with resolution far exceeding the Rayleigh limit. We first derive a formula for the image intensity via the pseudo-mode
decomposition and the fast Fourier transform valid for any partially coherent illumination (Schell-like, non-uniformly cor-
related, twisted) and then show how it can be used for numerical image manipulations. Further, for Schell-model sources,
we show the improvement of the two- and three-point resolution to 20% and 40% of the classic Rayleigh distance,
respectively.
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1. Introduction

Image formation with spatially partially coherent light has been
addressed in classic papers and monographs[1–4] in depth but is
nevertheless still the subject of acute scientific exploration[5–10].
In the general case of a partially coherent illumination, the
formed image cannot be simply expressed as a convolution of
the object’s transparency and the system’s impulse response
function, but rather involves four-dimensional (4D) correlation
integrals. In order to simplify image computations, several
numerical methods have been proposed including coherent-
model representation[11], outer-product expansion[12], pupil
shift matrix[13], and the elementary-field approach[14]. On the
other hand, several somewhat empirical studies showed that
the specially modeled complex degree of coherence (CDC)
might have a significant impact on the formed image resolution,
resulting in overcoming the Rayleigh diffraction limit[15–17]. In
particular, it was found in Ref. [15] that the twist phase can lead
to an improvement of the two-point image resolution by an
order of magnitude, but such a result only applies to axially sym-
metric points. Through manipulation of the CDC profile, the

image resolution was shown to reach about 0.93dR (dR being
the Rayleigh diffraction limit) for a partially correlated azimu-
thal vortex illumination[16] and about 0.85dR for the Laguerre–
Gaussian correlated illumination[17]. Instead of using a certain
type of illumination with a fixed CDC class, we propose to con-
struct the optimal realizable CDC. Since the CDC cannot be
devised arbitrarily, being a subject of several realizability condi-
tions[18], this makes the studies of the image resolution improve-
ment by adjusting the CDC somewhat complex.
Application of the Bochner’s theorem has led to a simple

strategy for devising genuine cross-spectral density (CSD) func-
tions[19], hence the CDCs, and has resulted in a “zoo” of novel
partially coherent sources[20–26]. Owing to their particular
source coherence properties, the radiated beams exhibit a variety
of effects on propagation, including self-focusing[20], self-split-
ting[27], and self-steering[28], and have already found applica-
tions in beam shaping, free-space optical communications,
and optical trapping[29–31]. Recently, the CDCs with spatially
varying phase functions of the Schell type have also been suc-
cessfully modeled[32] using a simple sliding-function method,
which substantially enriched available CDCs for asymmetric
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light manipulation[33], including imaging applications. The
sources with structured coherence have been synthesized in the
laboratory with the help of spatial light modulators (e.g.,
Refs. [26,29]) and using the van Cittert–Zernike theorem
(e.g., Ref. [17]).
In this Letter, we analyze telecentric imaging systems with the

most general partially coherent scalar illumination. We first use
a pseudo-mode expansion to evaluate the image intensity as a
sum of two-dimensional (2D) (not 4D) Fourier integrals. Our
new result is not limited to commonly used Schell-like illumina-
tion: it is also suitable for non-uniformly correlated[20] or
twisted[23] illumination. Then, using this result, we construct
the CDC of illumination, in the Schell-model class, for two par-
ticular axially symmetric cases: (i) two points and (ii) three
points located in the vertices of an equilateral triangle, and ana-
lyze possible resolution improvement.

2. Theoretical Analysis

A schematic diagram of the telecentric imaging system is given
in Fig. 1. Two lenses, L1 and L2 with focal lengths being
f = f 1 = f 2, constitute a typical 4f imaging system with unit
image magnification. The object and its image are in the front
focal plane of L1 and the rear focal plane of L2, respectively.
Let the illumination be radiated by a scalar, stationary source

characterized by the CSD function W0�r1,r2,ω� = hE��r1,ω� ·
E�r2,ω�i, where r1 = �x1,y1� and r2 = �x2,y2� are two position
vectors in the object plane[18]. Here, E denotes the electric field,
where the asterisk and the angle brackets stand for complex con-
jugate and ensemble average, and ω is the angular frequency (its
dependence will be omitted for brevity). With the (complex)
object transmittance O�r�, the CSD function behind the object
becomes

W
0
0�r1,r2� = O��r1�O�r2�W0�r1,r2�: (1)

If a coherent impulse response function between the object
plane and the image plane is K�r, ρ�, on the basis of coherence
theory, the relation between the CSD functions in the image and
the object planes is expressed via the integral

W im�ρ1, ρ2� =
Z

W
0
0�r1,r2�K��r1,ρ1�K�r2,ρ2�d2r1d2r2, (2)

where ρ1 and ρ2 are the position vectors in the image plane.
For the telecentric system with a pupil, the impulse function
K�r, ρ� is

K�r, ρ� = −
1

λ2f 2

Z
P�ξ� exp

�
−
ik
f
ξ · �r� ρ�

�
d2ξ, (3)

where k = 2π=λ with λ being the wavelength of light, and P�ξ� is
the complex-valued transmission function of the pupil whose
argument may contain the wave aberration of the system. For a
genuine CSD of illumination, it suffices to be representable as[19]

W0�r1,r2� = τ��r1�τ�r2�
Z

p�v�H�
0 �v,r1�H0�v,r2�d2v, (4)

where τ�r� is a complex amplitude function, p�v� can be
regarded as the power spectral density (hence, must be non-neg-
ative), and v is the 2D position vector in the spatial Fourier plane.
For the Schell-model beam, the CDC is the Fourier transform
(FT) of the p�v� function, which inspires us to construct the
genuine partially coherent beams with any desired CDCs
through adopting the suitable p�v� functions. H0 is an arbitrary
kernel. Substitution of Eqs. (1) and (4) into Eq. (2), results in the
image-plane spectral density Sim�ρ� =W im�ρ, ρ�:

Sim�ρ� =
Z

d2vp�v�
����
Z

τ�r�O�r�H0�v,r�K�r, ρ�d2r
����
2

: (5)

In Eq. (3), the impulse response function is K�r, ρ�=
K�−r − ρ�. Therefore, the spectral density in Eq. (5) becomes

Sim�ρ� =
Z

d2vp�v�
����
Z

F�v,r�K�−r − ρ�d2r
����
2

=
Z

d2vp�v�jIFT�F̃1�v,f�K̃�f��f−ρgj2, (6)

where F�v,r� = τ�r�O�r�H0�v,r�, and the tilde and IFT stand for
direct and inverse FT, respectively. It follows from Eq. (6) that
the fast FT (FFT) algorithm can be applied to calculate the spec-
tral density in the image plane. First, the integral in the absolute
value symbol is evaluated for each v using the FFT algorithm;
then, Eq. (6) is applied to integrate over all values of v. With
the help of the pseudo-mode expansion[34], the spectral density
Sim�ρ� takes an approximate discrete form:

Sim�ρ� =
XN
i

XN
j

p�vxi,vyj�M�vxi,vyj, − ρ�, (7)

withM�vxi,vyj, − ρ� = jIFT�F̃1�v,f�K̃�f��f−ρgj2 and v = �vxi,vyj�,
�i, j = 1, 2, : : : ,N�. Equations (6) and (7) result in a fast calcu-
lation scheme for the image-plane spectral density. In particular,
if the source of illumination has circular coherence[35], Eq. (7)
could further be reduced to a one-fold summation over v, greatly
saving the calculating time.When the illumination is Schell-like,
i.e., with the CDC depending on point separation, the spectral
density Sim�ρ� becomes

Fig. 1. Schematic diagram for a telecentric imaging system with lenses L1, L2
and a pupil.
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Sim�ρ� =
Z

d2vp�v�jIFT�F̃1�f − v�K̃�f��f−ρgj2, (8)

where F1�r� = τ�r�O�r�, and τ�r� is a complex amplitude func-
tion. For Schell-model sources, the kernel function in Eq. (4) has
the form H0�v,r� = exp�2πiv · r�. The result in Eq. (8) is the
same as in Ref. [9].

3. Numerical Results

We will now use Eq. (8) to analyze the effect of the CDC on the
image resolution under the Schell-model illumination whose
CDC only depends on the difference between two position vec-
tors. The Schell-model beams are readily experimentally gener-
ated and controlled[18]. Hence, the results derived latter will be
more instructive. In the following examples, the illumination’s
CDC could be optimized based on the coherent imaging theory,
where the optimal imaging for the two-point object and the
three-point object can be achieved by the phase difference
between the adjacent points being π and 2π/3, respectively.
First, let the object be two pinholes located on the x axis, sym-

metrical with respect to y = 0, set at separation d. Then, the
object transmission

O�r� = δ�x − d=2,y� � δ�x� d=2,y� (9)

is a pair of the Dirac-delta functions δ�·�. On substituting Eq. (9)
into Eq. (8) and setting τ�r� = exp�−r2=4σ20�, where σ0 is the
beam rms width, we obtain the expression for the image spectral
density:

Sim�ρ� = exp�−d2=8σ20�
Z

d2v × p�v�fjS�j2 � jS−j2

� 2 Re�S�S�−μ�d,0��g, (10)

where S± = P̃�ρx ± d=2,ρy�, P̃�ρ� is the FT of pupil P�u� with
u = ξ=λf , and μ�Δx,Δy� is the CDC. With Δr = r2 − r1=
�Δx,Δy�, relation

μ�Δr� = W�r1,r2�������������������������������������
W�r1,r1�W�r2,r2�

p =

R
d2vp�v� exp�2πiv · Δr�R

d2vp�v�
(11)

was used in derivation of Eq. (10) (only valid for Schell-model
sources).
Equation (10) is routinely used for the two-pinhole resolution

analysis under Schell-model illumination. We assume that the
system is aberration-free, i.e., P�ξ� = jP�ξ�j, being a hard circular
aperture of radius R. Hence,

S± =
2πR2

λ2f 2

J1

�
2πR

����������������������������������
�ρx ± d=2�2 � ρ2y

q
=λf

�

2πR
����������������������������������
�ρx ± d=2�2 � ρ2y

q
=λf

, (12)

where J1 is the Bessel function of the first kind and order one.
Since in Eq. (10) S± are real functions, S�S�− = S�S−. This result
is consistent with that reported in Ref. [17]. When illumination
is incoherent, μ�d,0� = 0, the minimum resolvable separation
(MRS) of two pinholes is given by the well-known Rayleigh cri-
terion: dR = 0.61λf =R. The Rayleigh criterion states that the
MRS is met if the position of the first zero of one pinhole image
coincides with the position of the maximum point of the other
pinhole image. However, the resolution will exceed the Rayleigh
limit if the real part of the CDC at �d,0� has a negative value (the
closer the CDC to −1, the higher the resolution). Nevertheless,
owing to the non-negative definiteness of p�v�, the CDC cannot
be set arbitrarily. It is one of the primary factors limiting the per-
formance of partially coherent illumination in imaging systems.
In fact, the minimum value of Re�μ�d,0�� is about −0.3 for
Laguerre–Gaussian correlated illumination of order six[17]. In
order to make Re�μ�d,0�� approach −1 (theoretical minimum
value), we choose p�v� as

p�v� = e−a
2��vx−b=2�2�v2y � � e−a

2��vx�b=2�2�v2y �, (13)

with real a and b. Substituting Eq. (13) into Eq. (11) yields

μ�Δr� = e−π
2Δr2=a2 cos�πΔx=b�, (14)

i.e., being a cosine function with period 2b enveloped by a
Gaussian function of width a=π.
Figure 2 illustrates the CDC as a function ofΔx=b at the cross

lineΔy = 0 for several values of a=b. For the bigger value of a=b,
it implies that we can get a slower envelope function and faster
modulation functions of the source CDC, namely the CDC will
get a value closer to −1. For a=b = 15, the CDC minimum value
is about −0.957, which is very close to the theoretical minimum
value of −1. From Eq. (14), one may deduce the position of the
minimum value by finding dμ�Δx,0�=dΔx = 0, which is
sin θ� 2�b=a�2θ cos θ = 0, where θ = πΔx=b. Hence, if ratio
a=b is sufficiently large, the position difference Δx, where

Fig. 2. Variation of CDC with Δx/b for different values of a/b.
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μ�Δx,0� reaches the minimum value, i.e., the closest to zero sol-
ution, is aboutΔx ≈ b �θ ≈ π�. Hence, the image of two pinholes
reaches appreciable resolution if b = d (distance between two
points) for large enough a=b.
Figures 3(a)–3(c) illustrate the density plots of the normalized

spectral density Sim�ρ�=�Sim�ρ��max illuminated by beams with
the CDC in Eq. (14) for three values of a=b. The distance
between two pinholes is set as d = dR. In the calculation of
the CDC function, we set b = dR. For comparison, the image
of two pinholes illuminated by an incoherent source is illustrated
in Fig. 3(d). As expected, the resolution of the two-pinhole image
is gradually improved as the value a=b increases. When
a=b = 15, one can clearly distinguish the images of two points
due to the negative correlation of the illumination at the pin-
holes. The corresponding cross lines of normalized spectral den-
sity (ρy = 0) in Figs. 3(a)–3(d) are shown in Fig. 3(e). Under
incoherent illumination, the ratio of the spectral density at ρ =
0 to the spectral density maxima is about Sim�0�=�Sim�ρ��max=
0.735, whereas the ratio decreases to 0.0286 when illumination
is cosine-Gaussian correlated with a=b = 15.
To assess the MRS of two pinholes, we plot in Figs. 4(a)–4(c)

their image for three values of d = b at a=b = 15. The corre-
sponding cross lines (ρy = 0) are shown in Fig. 4(d). As separa-
tion distance d decreases, the image gradually blurs. When it is
about 0.22dR, the ratio Sim�0�=�Sim�ρ��max is just 0.735, reaching
the MRS of two pinholes. Figure 4(e) shows the dependence of
the MRS of two pinholes on the value of a=b. As expected, the
resolution monotonically decreases with the increase of a=b.
When a=b = 20, the MRS is about 0.18dR.
Three pinholes placed at the vertices of an equilateral triangle

with side d can be characterized by transmission function

O1�r� = δ�x,y − d=
���
3

p
� � δ�x − d=2,y�

���
3

p
d=6�

� δ�x� d=2,y�
���
3

p
d=6�: (15)

Using Eq. (15) in Eq. (8), we get for the image spectral density

Sim�ρ� = exp

�
−

d2

6σ2

��
jS1j2 � jS2j2 � jS3j2

� 2 Re

�
S1S�2 × μ

�
−
d
2
,

���
3

p
d

2

�
� S�1S2μ

�
−
d
2
, −

���
3

p
d

2

�

� S2S�3μ�d,0�
�	

, (16)

where S1 = P̃�ρx,ρy � d��
3

p �, S2 = P̃�ρx � d
2 ,ρy −

d
2
��
3

p �, and
S3 = P̃�ρx − d

2 ,ρy −
d

2
��
3

p �. For the best resolution of such an

object, the real part of the CDC at �−d=2, ���
3

p
d=2�, �−d=2,

−
���
3

p
d=2�, and �d,0� must approach minimum possible (nega-

tive) values simultaneously. In order to obtain such a CDC,
we set

p�v� = e−a
2��vx− 1��

3
p

b�2�v2y�

� e−a
2��vx� 1

2
��
3

p
b�2��vy� 1

2 b�2��e−a
2��vx� 1

2
��
3

p
b�2��vy− 1

2 b�2�: (17)

Substituting Eq. (17) into Eq. (11) results in the CDC in form

μ�Δr� = 1
3
e−

π2Δr2
a2

�
2 cos

�
πΔy
b

�
e−

iπΔx��
3

p
b � ei

2πΔx��
3

p
b

�
, (18)

which is genuinely complex-valued.
Figure 5 shows variation of its real part with �Δx=b,Δy=b�

for a=b = 20 and the corresponding cross line at Δy=b = 0. In
Fig. 5(a), there are six minimum regions located on the vertices
of a regular hexagon. Three of them (denoted by white circles)
are the sought minimum points. Figure 5(b) shows that the posi-
tion of theminimum point in the right white circle is (1.15, 0). In
fact, it is possible to obtain the positions of minimum points on
axis Δy = 0 by solving equation ∂Re�μ�Δr��=∂ΔxjΔy=0 = 0.
When a=b is sufficiently large, the solution of this equation

Fig. 3. Images of two pinholes under (a)–(c) partially coherent illumination
(normalized Sim) for three values of ratio a/b; (d) incoherent illumination;
(e) the cross lines (ρy = 0) of Sim in (a)–(d).

Fig. 4. (a)–(c) Images (Sim) of two pinholes with three values of d under par-
tially coherent illumination with a/b = 15; (d) cross lines (ρy = 0) of Sim in (a)–(d);
(e) dependence of resolution on ratio a/b.
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is Δx = ±2
���
3

p
b=3. Hence, if b =

���
3

p
d=2, the values of

μ�−d=2, ���
3

p
d=2�, μ�−d=2, − ���

3
p

d=2�, and μ�d,0� are about
−0.493, i.e., they approach the limiting value of −0.5
as a=b → ∞.
Figures 6(a)–6(c) give the normalized spectral density of a

three-pinhole image at three separation values for b =
���
3

p
d=2

and a=b = 20. The corresponding images formed with incoher-
ent light are shown in Figs. 6(d)–6(f). When d = dR, the three
pinholes are clearly seen with illumination having CDC, as in
Eq. (18), whereas they are barely distinguishable with incoherent
light. As d decreases, the image gradually blurs. One can still
barely distinguish three pinholes at d = 0.4dR with partially
coherent light; while for incoherent light, the image degenerates
to a single bright spot [see Fig. 6(f)].

4. Conclusion

In summary, we analyzed imaging with partially coherent illu-
mination by deriving the integral formula involving the shape
p�v� function and correlation class H�r,v� on the basis of the
pesudo-mode expansion and FFT algorithm. By applying this
formula to Schell-like light with predesigned CDC, we found
that the image resolution of two pinholes can reach a value as
low as 0.18dR. In this case, the minimum negative value of

the designed CDC is≈ − 0.97, being very close to the ideal mini-
mum value of −1. In the three-pinhole scenario, the resolution
of about 0.4dR is achieved for each two-point pair. As compared
with the previous work, in which we had improved the image
resolution using the Laguerre–Gaussian correlated illumination
(the image resolution reached only 0.85dR)

[17], the current work
has demonstrated that one can substantially improve the image
resolution of a given object through the optimization design of
the illumination’s coherence state. Here, we provide our sugges-
tion for experimental realization of a specific Schell-model
illumination. As suggested by Ref. [36], generating a specific
Schell-model illumination in our work is actually to generate
a p�v� function, where the intensity distribution is denoted on
the round ground glass disk in the lab. The beam with any
desired intensity distribution could be generated by a hologram
loaded on a spatial light modulator. We can flexibly adjust the
intensity distribution if we choose the different holograms.More
details could be found in Ref. [36]. We anticipate that the idea of
the active illumination that we introduced can be applied in a
variety of the currently used conventional imaging systems,
including microscopy and diffraction tomography, and it may
generally stimulate the understanding and advancement of
optical image formation mechanisms.
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