• Photonics Research
  • Vol. 9, Issue 6, 1039 (2021)
Yang Li1、†, Haolin Chen2、†, Yanxian Guo1, Kangkang Wang1, Yue Zhang1, Peilin Lan1, Jinhao Guo1, Wen Zhang3, Huiqing Zhong1, Zhouyi Guo1、4, Zhengfei Zhuang1、5, and Zhiming Liu1、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science & SATCM Third Grade Laboratory of Chinese Medicine and Photonics Technology, College of Biophotonics, South China Normal University, Guangzhou 510631, China
  • 2Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
  • 3Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
  • 4e-mail: ann@scnu.edu.cn
  • 5e-mail: zhuangzf@scnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.421415 Cite this Article Set citation alerts
    Yang Li, Haolin Chen, Yanxian Guo, Kangkang Wang, Yue Zhang, Peilin Lan, Jinhao Guo, Wen Zhang, Huiqing Zhong, Zhouyi Guo, Zhengfei Zhuang, Zhiming Liu. Lamellar hafnium ditelluride as an ultrasensitive surface-enhanced Raman scattering platform for label-free detection of uric acid[J]. Photonics Research, 2021, 9(6): 1039 Copy Citation Text show less
    References

    [1] S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [2] E. Garcia-Rico, R. A. Alvarez-Puebla, L. Guerrini. Direct surface-enhanced Raman scattering (SERS) spectroscopy of nucleic acids: from fundamental studies to real-life applications. Chem. Soc. Rev., 47, 4909-4923(2018).

    [3] S. Hussain, H. Chen, Z. Zhang, H. Zheng. Vibrational spectra and chemical imaging of cyclo[18]carbon by tip enhanced Raman spectroscopy. Chem. Commun., 56, 2336-2339(2020).

    [4] J. Yu, M. Yang, Z. Li, C. Liu, Y. Wei, C. Zhang, B. Man, F. Lei. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants. Anal. Chem., 92, 14754-14761(2020).

    [5] W. Zhang, F. Lin, Y. Liu, H. Zhang, T. A. Gilbertson, A. Zhou. Spatiotemporal dynamic monitoring of fatty acid-receptor interaction on single living cells by multiplexed Raman imaging. Proc. Natl. Acad. Sci. USA, 117, 3518-3527(2020).

    [6] C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev., 118, 4946-4980(2018).

    [7] S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater., 1, 16021(2016).

    [8] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 46, 4042-4076(2017).

    [9] C. Li, S. Xu, J. Yu, Z. Li, W. Li, J. Wang, A. Liu, B. Man, S. Yang, C. Zhang. Local hot charge density regulation: vibration-free pyroelectric nanogenerator for effectively enhancing catalysis and in-situ surface enhanced Raman scattering monitoring. Nano Energy, 81, 105585(2021).

    [10] H. S. Su, H. S. Feng, Q. Q. Zhao, X. G. Zhang, J. J. Sun, Y. H. He, S. C. Huang, T. X. Huang, J. H. Zhong, D. Y. Wu, B. Ren. Probing the local generation and diffusion of active oxygen species on a Pd/Au bimetallic surface by tip-enhanced Raman spectroscopy. J. Am. Chem. Soc., 142, 1341-1347(2020).

    [11] H. Zhang, S. Duan, P. M. Radjenovic, Z. Q. Tian, J. F. Li. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res., 53, 729-739(2020).

    [12] X. Zhao, C. Liu, J. Yu, Z. Li, L. Liu, C. Li, S. Xu, W. Li, B. Man, C. Zhang. Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics, 9, 4761-4773(2020).

    [13] X. H. Li, S. H. Guo, J. Su, X. G. Ren, Z. Y. Fang. Efficient Raman enhancement in molybdenum disulfide by tuning the interlayer spacing. ACS Appl. Mater. Interfaces, 12, 28474-28483(2020).

    [14] X. Ling, W. J. Fang, Y. H. Lee, P. T. Araujo, X. Zhang, J. F. Rodriguez-Nieva, Y. X. Lin, J. Zhang, J. Kong, M. S. Dresselhaus. Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett., 14, 3033-3040(2014).

    [15] Z. M. Liu, H. L. Chen, Y. L. Jia, W. Zhang, H. N. Zhao, W. D. Fan, W. L. Zhang, H. Q. Zhong, Y. R. Ni, Z. Y. Guo. A two-dimensional fingerprint nanoprobe based on black phosphorus for bio-SERS analysis and chemo-photothermal therapy. Nanoscale, 10, 18795-18804(2018).

    [16] Y. Tan, L. N. Ma, Z. B. Gao, M. Chen, F. Chen. Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering. Nano Lett., 17, 2621-2626(2017).

    [17] J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, R. P. Van Duyne. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss., 132, 9-26(2006).

    [18] B. N. J. Persson, K. Zhao, Z. Y. Zhang. Chemical contribution to surface-enhanced Raman scattering. Phys. Rev. Lett., 96, 207401(2006).

    [19] P. Q. Lu, Y. Wang, H. L. Xu, X. Y. Wang, N. Ali, J. Q. Zhu, H. Z. Wu. Surface-enhanced Raman scattering on sandwiched structures with gallium telluride. J. Mater. Sci., 55, 10047-10055(2020).

    [20] L. Tao, K. Chen, Z. Chen, C. Cong, C. Qiu, J. Chen, X. Wang, H. Chen, T. Yu, W. Xie, S. Deng, J. B. Xu. 1T’ transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J. Am. Chem. Soc., 140, 8696-8704(2018).

    [21] A. L. Wang, C. Guan, G. Y. Shan, Y. W. Chen, C. L. Wang, Y. C. Liu. A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim. Acta, 186, 644(2019).

    [22] C. Westley, Y. Xu, B. Thilaganathan, A. J. Carnell, N. J. Turner, R. Goodacre. Absolute quantification of uric acid in human urine using surface enhanced Raman scattering with the standard addition method. Anal. Chem., 89, 2472-2477(2017).

    [23] F. Yang, P. Sun, H. Zhao, C. Zhao, N. Zhang, Y. Dai. Genetic association and functional analysis of rs7903456 in FAM35A gene and hyperuricemia: a population based study. Sci. Rep., 8, 9579(2018).

    [24] K. M. Black, H. Law, A. Aldoukhi, J. Deng, K. R. Ghani. Deep learning computer vision algorithm for detecting kidney stone composition. BJU Int., 125, 920-924(2020).

    [25] C. C. Chang, C. H. Wu, L. K. Liu, R. H. Chou, C. S. Kuo, P. H. Huang, L. K. Chen, S. J. Lin. Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: the Taiwan I-Lan longitudinal aging study. Sci. Rep., 8, 5234(2018).

    [26] P. Richette, M. Doherty, E. Pascual, V. Barskova, F. Becce, J. Castaneda, M. Coyfish, S. Guillo, T. Jansen, H. Janssens, F. Liote, C. D. Mallen, G. Nuki, F. Perez-Ruiz, J. Pimentao, L. Punzi, A. Pywell, A. K. So, A. K. Tausche, T. Uhlig, J. Zavada, W. Y. Zhang, F. Tubach, T. Bardin. 2018 updated European league against rheumatism evidence-based recommendations for the diagnosis of gout. Ann. Rheum. Dis., 79, 31-38(2020).

    [27] X. H. Dai, X. Fang, C. M. Zhang, R. F. Xu, B. Xu. Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J. Chromatogr. B, 857, 287-295(2007).

    [28] D. Habibi, A. R. Faraji, A. Gil. A highly sensitive supported manganese-based voltammetric sensor for the electrocatalytic determination of captopril. Sens. Actuators B, 182, 80-86(2013).

    [29] Y. W. Tao, X. J. Zhang, J. W. Wang, X. X. Wang, N. J. Yang. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. J. Electroanal. Chem., 674, 65-70(2012).

    [30] Q. H. Yan, N. Zhi, L. Yang, G. R. Xu, Q. G. Feng, Q. Q. Zhang, S. J. Sun. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Sci. Rep., 10, 10607(2020).

    [31] M. T. Alula, P. Lemmens, L. Bo, D. Wulferding, J. Yang, H. Spende. Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal. Chim. Acta, 1073, 62-71(2019).

    [32] E. Gurian, P. Giraudi, N. Rosso, C. Tiribelli, D. Bonazza, F. Zanconati, M. Giuricin, S. Palmisano, N. de Manzini, V. Sergo, A. Bonifacio. Differentiation between stages of non-alcoholic fatty liver diseases using surface-enhanced Raman spectroscopy. Anal. Chim. Acta, 1110, 190-198(2020).

    [33] R. S. Juang, Y. W. Cheng, W. T. Chen, K. S. Wang, C. C. Fu, S. H. Liu, R. J. Jeng, C. C. Chen, M. C. Yang, T. Y. Liu. Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Appl. Surf. Sci., 521, 146372(2020).

    [34] R. K. Saravanan, T. K. Naqvi, S. Patil, P. K. Dwivedi, S. Verma. Purine-blended nanofiber woven flexible nanomats for SERS-based analyte detection. Chem. Commun., 56, 5795-5798(2020).

    [35] X. Ling, L. M. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, Z. Liu. Can graphene be used as a substrate for Raman enhancement?. Nano Lett., 10, 553-561(2010).

    [36] C. Qiu, H. Zhou, H. Yang, M. Chen, Y. Guo, L. Sun. Investigation of n-layer graphenes as substrates for Raman enhancement of crystal violet. J. Phys. Chem. C, 115, 10019-10025(2011).

    [37] C. Cheng, J. T. Sun, X. R. Chen, S. Meng. Hidden spin polarization in the 1T-phase layered transition-metal dichalcogenides MX2(M = Zr, Hf; X = S, Se, Te). Sci. Bull., 63, 85-91(2018).

    [38] B. Harbrecht, M. Conrad, T. Degen, R. Herbertz. Synthesis and crystal structure of Hf2Te. J. Alloy. Compd., 255, 178-182(1997).

    [39] S. Aminalragia-Giamini, J. Marquez-Velasco, P. Tsipas, D. Tsoutsou, G. Renaud, A. Dimoulas. Molecular beam epitaxy of thin HfTe2 semimetal films. 2D Mater., 4, 015001(2017).

    [40] M. Chennabasappa, M. Lahaye, B. Chevalier, C. Labrugere, O. Toulemonde. A successful process to prevent corrosion of rich Gd-based room temperature magnetocaloric material during ageing. J. Alloy. Compd., 850, 156554(2021).

    [41] R. Lai, M. Wei, J. Wang, K. Zhou, X. Qiu. Temperature dependence of resistive switching characteristics in NiO(111) films on metal layer. J. Phys. D, 54, 015101(2021).

    [42] H. Hichem, A. Djamila, A. Hania. Optical, electrical and photoelectrochemical characterization of electropolymerized poly methylene blue on fluorine doped tin oxide conducting glass. Electrochim. Acta, 106, 69-74(2013).

    [43] S. Lin, W. Hasi, X. Lin, S. Han, T. Xiang, S. Liang, L. Wang. Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens., 5, 1465-1473(2020).

    [44] D. Pristinski, S. L. Tan, M. Erol, H. Du, S. Sukhishvili. In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles. J. Raman Spectrosc., 37, 762-770(2006).

    [45] J. Lin, L. Liang, X. Ling, S. Zhang, N. Mao, N. Zhang, B. G. Sumpter, V. Meunier, L. Tong, J. Zhang. Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc., 137, 15511-15517(2015).

    [46] J. P. Fraser, P. Postnikov, E. Miliutina, Z. Kolska, R. Valiev, V. Svorcik, O. Lyutakov, A. Y. Ganin, O. Guselnikova. Application of a 2D molybdenum telluride in SERS detection of biorelevant molecules. ACS Appl. Mater. Interfaces, 12, 47774-47783(2020).

    [47] C. Jiang, Y. Wei, P. Zhao, P. Wang, Y. Fang, L. Zhang. Investigation of surface-enhanced Raman spectroscopy on the substrates of telluride 2D material. Eur. Phys. J. Plus, 135, 671(2020).

    [48] K. Wang, Z. Guo, Y. Li, Y. Guo, H. Liu, W. Zhang, Z. Zou, Y. Zhang, Z. Liu. Few-layer NbTe2 nanosheets as substrates for surface-enhanced Raman scattering analysis. ACS Appl. Nano Mater., 3, 11363-11371(2020).

    [49] A. Sarycheva, T. Makaryan, K. Maleski, E. Satheeshkumar, A. Melikyan, H. Minassian, M. Yoshimura, Y. Gogotsi. Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C, 121, 19983-19988(2017).

    [50] H. Wu, X. Zhou, J. Li, X. Li, B. Li, W. Fei, J. Zhou, J. Yin, W. Guo. Ultrathin molybdenum dioxide nanosheets as uniform and reusable surface-enhanced Raman spectroscopy substrates with high sensitivity. Small, 14, 1802276(2018).

    [51] J. Langer, D. J. de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J. G. de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Ka, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, X. Y. Ling, S. A. Maier, T. Mayerhofer, M. Moskovits, K. Murakoshi, J. M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S. Schlucker, L. L. Tay, K. G. Thomas, Z. Q. Tian, R. P. Van Duyne, T. Vo-Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao, L. M. Liz-Marzan. Present and future of surface-enhanced Raman scattering. ACS Nano, 14, 28-117(2020).

    [52] W. Ji, L. Li, W. Song, X. Wang, B. Zhao, Y. Ozaki. Enhanced Raman scattering by ZnO superstructures: synergistic effect of charge transfer and Mie resonances. Angew. Chem., 58, 14452-14456(2019).

    [53] E. Kazuma, J. Jung, H. Ueba, M. Trenary, Y. Kim. STM studies of photochemistry and plasmon chemistry on metal surfaces. Prog. Surf. Sci., 93, 163-176(2018).

    [54] N. J. Kim, J. Kim, J. B. Park, H. Kim, G. C. Yi, S. Yoon. Direct observation of quantum tunnelling charge transfers between molecules and semiconductors for SERS. Nanoscale, 11, 45-49(2018).

    [55] J. Lin, Y. Shang, X. X. Li, J. Yu, X. T. Wang, L. Guo. Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle. Adv. Mater., 29, 1604797(2016).

    [56] Z. Yu, W. Yu, J. Xing, R. A. Ganeev, W. Xin, J. Cheng, C. Guo. Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite. ACS Photon., 5, 1619-1627(2018).

    [57] X. Wang, W. Shi, G. She, L. Mu. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J. Am. Chem. Soc., 133, 16518-16523(2011).

    [58] K. Chen, X. Y. Zhang, D. R. MacFarlane. Ultrasensitive surface-enhanced Raman scattering detection of urea by highly ordered Au/Cu hybrid nanostructure arrays. Chem. Commun., 53, 7949-7952(2017).

    Yang Li, Haolin Chen, Yanxian Guo, Kangkang Wang, Yue Zhang, Peilin Lan, Jinhao Guo, Wen Zhang, Huiqing Zhong, Zhouyi Guo, Zhengfei Zhuang, Zhiming Liu. Lamellar hafnium ditelluride as an ultrasensitive surface-enhanced Raman scattering platform for label-free detection of uric acid[J]. Photonics Research, 2021, 9(6): 1039
    Download Citation