• Photonics Research
  • Vol. 9, Issue 10, 1892 (2021)
Tianning Zheng1, Bin Wei1、3、*, Fuchuan Lei2、4、*, and Bisong Cao1
Author Affiliations
  • 1Department of Physics, State Key Laboratory Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
  • 2Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
  • 3e-mail: weibin@tsinghua.edu.cn
  • 4e-mail: fuchuan@chalmers.se
  • show less
    DOI: 10.1364/PRJ.430185 Cite this Article Set citation alerts
    Tianning Zheng, Bin Wei, Fuchuan Lei, Bisong Cao. Very large group delay in VHF band using coupled high temperature superconducting resonators[J]. Photonics Research, 2021, 9(10): 1892 Copy Citation Text show less
    References

    [1] S. E. Harris, J. E. Field, A. Imamoğlu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64, 1107-1110(1990).

    [2] K.-J. Boller, A. Imamoğlu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [3] A. M. Akulshin, S. Barreiro, A. Lezama. Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor. Phys. Rev. A, 57, 2996-3002(1998).

    [4] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, M. D. Lukin. Electromagnetically induced transparency with tunable single-photon pulses. Nature, 438, 837-841(2005).

    [5] M. Mücke, E. Figueroa, J. Bochmann, C. Hahn, K. Murr, S. Ritter, C. J. Villas-Boas, G. Rempe. Electromagnetically induced transparency with single atoms in a cavity. Nature, 465, 755-758(2010).

    [6] R. Röhlsberger, H.-C. Wille, K. Schlage, B. Sahoo. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature, 482, 199-203(2012).

    [7] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 meters per second in ultracold atomic gases. Nature, 397, 594-598(1999).

    [8] G. Morigi, J. Eschner, C. H. Keitel. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett., 85, 4458-4461(2000).

    [9] D. A. Braje, V. Balić, S. Goda, G. Y. Yin, S. E. Harris. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 93, 183601(2004).

    [10] N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett., 101, 253903(2008).

    [11] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [12] L. Zhang, P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, C. M. Soukoulis. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Appl. Phys. Lett., 97, 241904(2010).

    [13] J. Zhai, J. Zhou, L. Zhang, W. Hong. Behavioral modeling of power amplifiers with dynamic fuzzy neural networks. IEEE Microw. Wireless Compon. Lett., 20, 528-530(2010).

    [14] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [15] P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation. Phys. Rev. Lett., 109, 187401(2012).

    [16] Z. Vafapour. Slow light modulator using semiconductor metamaterial. Proc. SPIE, 10535, 105352A(2018).

    [17] R. Yang, Q. Fu, Y. Fan, W. Cai, K. Qiu, W. Zhang, F. Zhang. Active control of EIT-like response in a symmetry-broken metasurface with orthogonal electric dipolar resonators. Photon. Res., 7, 955-960(2019).

    [18] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [19] Q. Xu, P. Dong, M. Lipson. Breaking the delay-bandwidth limit in a photonic structure. Nat. Phys., 3, 406-410(2007).

    [20] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [21] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [22] R. Taubert, M. Hentschel, J. Kästel, H. Giessen. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett., 12, 1367-1371(2012).

    [23] G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, E. A. Shaner. Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals. Nat. Photonics, 7, 925-930(2013).

    [24] C. W. Hsu, B. G. DeLacy, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Theoretical criteria for scattering dark states in nanostructured particles. Nano Lett., 14, 2783-2788(2014).

    [25] A. A. Abdumalikov, O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, J. S. Tsai. Electromagnetically induced transparency on a single artificial atom. Phys. Rev. Lett., 104, 193601(2010).

    [26] P. M. Anisimov, J. P. Dowling, B. C. Sanders. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency. Phys. Rev. Lett., 107, 163604(2011).

    [27] J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu. Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett., 99, 161113(2011).

    [28] C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, C. M. Soukoulis. Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys. Rev. Lett., 107, 043901(2011).

    [29] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross, T. J. Kippenberg. Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nat. Phys., 9, 179-184(2013).

    [30] O. Limaj, F. Giorgianni, A. Di Gaspare, V. Giliberti, G. De Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, S. Lupi. Superconductivity-induced transparency in terahertz metamaterials. ACS Photon., 1, 570-575(2014).

    [31] C. Zhang, J. Wu, B. Jin, X. Jia, L. Kang, W. Xu, H. Wang, J. Chen, M. Tonouchi, P. Wu. Tunable electromagnetically induced transparency from a superconducting terahertz metamaterial. Appl. Phys. Lett., 110, 241105(2017).

    [32] J. Joo, J. Bourassa, A. Blais, B. C. Sanders. Electromagnetically induced transparency with amplification in superconducting circuits. Phys. Rev. Lett., 105, 073601(2010).

    [33] Z. Vafapour, M. Dutta, M. A. Stroscio. Sensing, switching and modulating applications of a superconducting THz metamaterial. IEEE Sens. J., 21, 15187-15195(2021).

    [34] A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472, 69-73(2011).

    [35] H. Xiong, Y. Wu. Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev., 5, 031305(2018).

    [36] D. U. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, R. W. Boyd. Coupled-resonator-induced transparency. Phys. Rev. A, 69, 063804(2004).

    [37] K. Totsuka, N. Kobayashi, M. Tomita. Slow light in coupled-resonator-induced transparency. Phys. Rev. Lett., 98, 213904(2007).

    [38] F.-C. Lei, M. Gao, C. Du, Q.-L. Jing, G.-L. Long. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express, 23, 11508-11517(2015).

    [39] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334-340(2020).

    [40] B. Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, H. Schmidt. Slow light on a chip via atomic quantum state control. Nat. Photonics, 4, 776-779(2010).

    [41] S. D. Berger. The spectrum of a digital radio frequency memory linear range gate stealer electronic attack signal. Proceedings of the 2001 IEEE Radar Conference, 27-30(2001).

    [42] M. Amin, R. Ramzan, O. Siddiqui. Slow wave applications of electromagnetically induced transparency in microstrip resonator. Sci. Rep., 8, 2357(2018).

    [43] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    Tianning Zheng, Bin Wei, Fuchuan Lei, Bisong Cao. Very large group delay in VHF band using coupled high temperature superconducting resonators[J]. Photonics Research, 2021, 9(10): 1892
    Download Citation