• Photonics Research
  • Vol. 10, Issue 1, 205 (2022)
Jian Li1、2, Xinxin Zhou2, Yang Xu2, Lijun Qiao2, Jianzhong Zhang1, and Mingjiang Zhang1、2、*
Author Affiliations
  • 1College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.442352 Cite this Article Set citation alerts
    Jian Li, Xinxin Zhou, Yang Xu, Lijun Qiao, Jianzhong Zhang, Mingjiang Zhang. Slope-assisted Raman distributed optical fiber sensing[J]. Photonics Research, 2022, 10(1): 205 Copy Citation Text show less
    References

    [1] M. A. Soto, J. A. Ramírez, L. Thévenaz. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nat. Commun., 7, 10870(2016).

    [2] X. Z. Sun, Z. S. Yang, X. B. Hong, S. Zaslawski, S. Wang, M. A. Soto, X. Gao, J. Wu, L. Thévenaz. Genetic-optimised aperiodic code for distributed optical fibre sensors. Nat. Commun., 11, 5774(2020).

    [3] D. M. Chow, Z. Yang, M. A. Soto, L. Thévenaz. Distributed forward Brillouin sensor based on local light phase recovery. Nat. Commun., 9, 2990(2018).

    [4] Z. W. Zhan, M. Cantono, V. Kamalov, A. Mecozzo, R. Muller, S. Yin, J. C. Castellanos. Optical polarization–based seismic and water wave sensing on transoceanic cables. Science, 371, 931-936(2021).

    [5] Y. K. Dong, C. Pang, Z. J. Hua, D. W. Zhou, H. Y. Zhang, L. Chen, X. Y. Bao. Optomechanical time-domain analysis based on coherent forward stimulated Brillouin scattering probing. Optica, 7, 176-184(2020).

    [6] Z. Zhao, H. Wu, J. Hu, K. Zhu, Y. L. Dang, Y. X. Yan, M. Tang, C. Lu. Interference fading suppression in Phi-OTDR using space-division multiplexed probes. Opt. Express, 29, 15452-15462(2021).

    [7] Z. L. Zhang, Y. G. Lu, J. Q. Peng, Z. Y. Ji. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF. Opt. Lett., 46, 1776-1779(2021).

    [8] J. L. Jiang, Z. N. Wang, Z. T. Wang, Z. J. Qiu, C. Y. Liu, Y. Y. Rao. Continuous chirped-wave phase-sensitive OTDR. Opt. Lett., 46, 686-688(2021).

    [9] A. Leal-Junior, C. Díaz, A. Frizera, H. Lee, K. Nakamura, Y. Mizuno, C. Marques. Highly sensitive fiber-optic intrinsic electromagnetic field sensing. Adv. Photon. Res., 2, 2000078(2021).

    [10] X. T. Lou, Y. B. Feng, S. H. Yang, Y. K. Dong. Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy. Photon. Res., 9, 193-201(2021).

    [11] Y. Zhao, Y. Qi, H. L. Ho, S. F. Gao, Y. Y. Wang, W. Jin. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers. Optica, 8, 532-538(2021).

    [12] S. Xie, A. Sharma, M. Romodina, N. Joly, P. St.J. Russell. Tumbling and anomalous alignment of optically levitated anisotropic microparticles in chiral hollow-core photonic crystal fiber. Sci. Adv., 7, 6053-6062(2021).

    [13] H. T. Zhu, L. W. Zhan, Q. Dai, B. Xu, Y. Chen, Y. Q. Lu, F. Xu. Self-assembled wavy optical microfiber for stretchable wearable sensor. Adv. Opt. Mater., 9, 2002206(2021).

    [14] H. Chen, M. Buric, P. R. Ohodnicki, J. Nakano, B. Liu, B. T. Chorpening. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing. Appl. Phys. Rev., 5, 011102(2018).

    [15] X. Wang, J. F. Jiang, S. Wang, K. Liu, T. G. Liu. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range. Photon. Res., 9, 521-529(2021).

    [16] B. Lu, B. Y. Wu, J. F. Gu, J. Q. Yang, K. Gao, Z. Y. Wang, L. Ye, Q. Ye, R. H. Qu, X. B. Chen, H. W. Cai. Distributed optical fiber hydrophone based on Φ-OTDR and its field test. Opt. Express, 29, 3147-3162(2021).

    [17] S. Gao, Y. Wang, W. Ding, Y. Hong, P. Wang. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photon. Rev., 14, 1900241(2020).

    [18] V. Fuertes, N. Grégoire, P. Labranche, S. Gagnon, Y. Messaddeq. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers. Sci. Rep., 11, 9116(2021).

    [19] Z. Zhang, Y. Lu, J. Peng, Z. Ji. Simultaneous measurement of temperature and acoustic impedance based on forward Brillouin scattering in LEAF. Opt. Lett., 46, 1776-1779(2021).

    [20] Z. Li, Y. Zhou, B. Jiang, J. Zhao. Phase fluctuation cancellation for coherent detection BOTDA fiber sensors based on optical subcarrier multiplexing. Opt. Lett., 46, 757-760(2021).

    [21] Z. Zhang, H. Wu, C. Zhao, M. Tang. High-performance Raman distributed temperature sensing powered by deep learning. J. Lightwave Technol., 39, 654-659(2021).

    [22] Y. S. Muanenda, M. Taki, T. Nannipieri, A. Signorini, C. J. Oton, F. Zaidi, I. Toccafondo, F. Di Pasquale. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements. J. Lightwave Technol., 34, 342-350(2016).

    [23] J. Li, Q. Zhang, Y. Xu, M. J. Zhang, J. Z. Zhang, L. J. Qiao, M. M. Promi, W. Tao. High-accuracy distributed temperature measurement using difference sensitive-temperature compensation for Raman-based optical fiber sensing. Opt. Express, 27, 38163-38196(2019).

    [24] Y. Xu, J. Li, M. Zhang, T. Yu, B. Yan, X. Zhou, F. Yu, J. Zhang, L. Qiao, T. Wang, S. Gao. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J., 20, 7870-7877(2020).

    [25] A. Datta, H. Mamidala, D. Venkitesh, B. Srinivasan. Reference-free real-time power line monitoring using distributed anti-Stokes Raman thermometry for smart power grids. IEEE Sens. J., 20, 7044-7052(2019).

    [26] J. Li, B. Q. Yan, M. J. Zhang, J. Z. Zhang, B. Q. Jin, Y. Wang, D. Wang. Long-range Raman distributed fiber temperature sensor with early warning model for fire detection and prevention. IEEE Sens. J., 19, 3711-3717(2019).

    [27] J. Q. Wang, Z. Y. Li, X. L. Fu, X. Gui, J. Zhan, H. H. Wang, D. S. Jiang. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulse width. Opt. Express, 28, 16045-16056(2020).

    [28] Y. Liu, L. Ma, C. Yang, W. Tong, Z. Y. He. Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber. Opt. Express, 26, 20562-20571(2018).

    [29] M. A. Soto, N. Nannipieri, A. Signorini, A. Lazzeri, F. D. Pasquale. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding. Opt. Lett., 36, 2557-2559(2011).

    [30] J. Li, X. X. Zhou, Z. T. Yin, C. Y. Wang, Y. Xu, J. Z. Zhang, M. J. Zhang. Reconstruction compression correlation demodulation for Raman optical time domain reflection. Adv. Photon. Res., 2, 2100047(2021).

    [31] C. Pandian, M. Kasinathan, S. Sosamma, C. B. Rao, T. Jayakumar, N. Murali, B. Raj. Single-fiber grid for improved spatial resolution in distributed fiber optic sensor. Opt. Lett., 35, 1677-1679(2010).

    [32] M. Sun, Y. Tang, S. Yang, J. Li, S. Markus, F. Dong. Fire source localization based on distributed temperature sensing by a dual-line optical fiber system. Sensors, 16, 829(2016).

    Jian Li, Xinxin Zhou, Yang Xu, Lijun Qiao, Jianzhong Zhang, Mingjiang Zhang. Slope-assisted Raman distributed optical fiber sensing[J]. Photonics Research, 2022, 10(1): 205
    Download Citation