• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1916003 (2022)
Hongyi Jiang, Xinyi Zhao*, Tianqing Li, Qiang Zhu, Dan Wang, and Yucheng Lei**
Author Affiliations
  • School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • show less
    DOI: 10.3788/LOP202259.1916003 Cite this Article Set citation alerts
    Hongyi Jiang, Xinyi Zhao, Tianqing Li, Qiang Zhu, Dan Wang, Yucheng Lei. Microstructure and Properties of 35.8%Fe-20%Ti-20%Al-24%Cr- 0.2%Y2O3 Coatings Prepared by Laser Cladding[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916003 Copy Citation Text show less
    References

    [1] Lambrinou K, Charalampopoulou E, van der Donck T et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃[J]. Journal of Nuclear Materials, 490, 9-27(2017).

    [2] Tian S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead-bismuth eutectic at 480℃[J]. Oxidation of Metals, 93, 183-194(2020).

    [3] Kurata Y. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead-bismuth eutectic[J]. Journal of Nuclear Materials, 448, 239-249(2014).

    [4] Weisenburger A, Schroer C, Jianu A et al. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: experiments and models[J]. Journal of Nuclear Materials, 415, 260-269(2011).

    [5] Klok O, Lambrinou K, Gavrilov S et al. Influence of plastic deformation on dissolution corrosion of type 316L austenitic stainless steel in static, oxygen-poor liquid lead-bismuth eutectic at 500 ℃[J]. CORROSION, 73, 1078-1090(2017).

    [6] Chen G, Ju N, Lei Y C et al. Corrosion behavior of 410 stainless steel in flowing lead-bismuth eutectic alloy at 550 ℃[J]. Journal of Nuclear Materials, 522, 168-183(2019).

    [7] Martinelli L, Ginestar K, Botton V et al. Corrosion of T91 and pure iron in flowing and static Pb-Bi alloy between 450 ℃ and 540 ℃: experiments, modelling and mechanism[J]. Corrosion Science, 176, 108897(2020).

    [8] Hu D W, Liu Y, Chen H et al. Microstructure and properties of laser cladding Ni-based WC coating on Q960E steel[J]. Chinese Journal of Lasers, 48, 0602120(2021).

    [9] Li Y N, Li Z G, Wang X X et al. Fe-based wear-resistant coating on railroad switch prepared using laser cladding technology and its properties[J]. Chinese Journal of Lasers, 47, 0402009(2020).

    [10] Xu Y F, Sun Y N, Wang G J et al. Microstructure and properties of iron-based alloys coatings prepared by high-speed laser cladding[J]. Chinese Journal of Lasers, 48, 1002122(2021).

    [11] Ferré F G, Ormellese M, Fonzo F D et al. Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: a preliminary study[J]. Corrosion Science, 77, 375-378(2013).

    [12] Ferré F G, Mairov A, Iadicicco D et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors[J]. Corrosion Science, 124, 80-92(2017).

    [13] Glasbrenner H, Gröschel F. Exposure of pre-stressed T91 coated with TiN, CrN and DLC to Pb-55.5Bi[J]. Journal of Nuclear Materials, 356, 213-221(2006).

    [14] Wu Z Y, Zhao X, Liu Y et al. Lead-bismuth eutectic (LBE) corrosion behavior of AlTiN coatings at 550 and 600 ℃[J]. Journal of Nuclear Materials, 539, 152280(2020).

    [15] Zhang M L, Qiu C J, Jiang Y L et al. Microstructure and properties of laser in situ synthesized Al2O3-TiO2 composite ceramic coating[J]. Journal of Materials Engineering, 46, 57-65(2018).

    [16] Fetzer R, Weisenburger A, Jianu A et al. Oxide scale formation of modified FeCrAl coatings exposed to liquid lead[J]. Corrosion Science, 55, 213-218(2012).

    [17] PalDey S, Deevi S C. Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review[J]. Materials Science and Engineering: A, 342, 58-79(2003).

    [18] London A J, Santra S, Amirthapandian S et al. Effect of Ti and Cr on dispersion, structure and composition of oxide nano-particles in model ODS alloys[J]. Acta Materialia, 97, 223-233(2015).

    [19] Sakasegawa H, Chaffron L, Legendre F et al. Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. Journal of Nuclear Materials, 384, 115-118(2009).

    [20] Zhang M, Wang X H, Liu S S et al. Microstructure and high-temperature properties of Fe-Ti-Cr-Mo-B-C-Y2O3 laser cladding coating[J]. Journal of Rare Earths, 38, 683-688(2020).

    [21] Bai Y, Wang Z H, Zuo J J et al. Fe-based composite coating prepared by laser cladding and its heat and corrosion resistance[J]. Chinese Journal of Lasers, 47, 1002001(2020).

    [22] Wang X H, Liu S S, Zhang M et al. Effect of rare earth oxide on the microstructure and wear properties of in situ-synthesized ceramics-reinforced Fe-based laser cladding coatings[J]. Tribology Transactions, 63, 345-355(2020).

    [23] An X L, Wang Y L, Jiang F L et al. Influence of lap ratio on temperature field and residual stress distribution of 42CrMo laser cladding[J]. Chinese Journal of Lasers, 48, 1002110(2021).

    [24] Pang Y F, Fu G Y, Wang M Y et al. Parameter optimization of high deposition rate laser cladding based on the response surface method and genetic neural network model[J]. Chinese Journal of Lasers, 48, 0602112(2021).

    [25] Jiang Y L, Qiu C J, Liu Z. High-temperature oxidation resistance and corrosion resistance of CrFeAlTi composite coatings[J]. China Surface Engineering, 28, 84-89(2015).

    [26] Sourani F, Enayati M H, Ashrafizadeh F et al. Enhancing surface properties of (Fe, Cr)Al-Al2O3 nanocomposite by oxygen ion implantation[J]. Journal of Alloys and Compounds, 853, 156892(2021).

    [27] Luo X X, Yao Z J, Zhang P Z et al. Laser cladding Fe-Al-Cr coating with enhanced mechanical properties[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34, 1197-1204(2019).

    [28] Xu H Z, Ge H H, Wang J F et al. Effects of process parameters upon chromium element distribution in laser-cladded 316L stainless steel[J]. Chinese Journal of Lasers, 47, 1202004(2020).

    [29] Karak S K, Chudoba T, Witczak Z et al. Development of ultra high strength nano-Y2O3 dispersed ferritic steel by mechanical alloying and hot isostatic pressing[J]. Materials Science and Engineering: A, 528, 7475-7483(2011).

    [30] Karak S K, Majumdar J D, Witczak Z et al. Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion[J]. Materials Science and Engineering: A, 580, 231-241(2013).

    [31] Sun Y, Li Y, Zhang L X et al. Formation mechanism and controllable preparation of Ti(C, N) in Al-TiO2-Al2O3 composite at 1673 K in flowing N2[J]. Materials Chemistry and Physics, 239, 122128(2020).

    [32] Kaya G, Gunhan B, Ozer I O et al. Production of TiO2 coated α-Al2O3 platelets by flame spray pyrolysis and their characterization[J]. Ceramics International, 46, 25512-25519(2020).

    [33] Chen L, Paulitsch J, Du Y et al. Thermal stability and oxidation resistance of Ti-Al-N coatings[J]. Surface and Coatings Technology, 206, 2954-2960(2012).

    Hongyi Jiang, Xinyi Zhao, Tianqing Li, Qiang Zhu, Dan Wang, Yucheng Lei. Microstructure and Properties of 35.8%Fe-20%Ti-20%Al-24%Cr- 0.2%Y2O3 Coatings Prepared by Laser Cladding[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1916003
    Download Citation