• Chinese Optics Letters
  • Vol. 19, Issue 10, 101401 (2021)
Yufei Jia1、2, Yufei Wang1、3, Xuyan Zhou1, Linhai Xu1、2, Pijie Ma1、3, Jingxuan Chen1、2, Hongwei Qu1, and Wanhua Zheng1、2、3、4、*
Author Affiliations
  • 1Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • 4State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/COL202119.101401 Cite this Article Set citation alerts
    Yufei Jia, Yufei Wang, Xuyan Zhou, Linhai Xu, Pijie Ma, Jingxuan Chen, Hongwei Qu, Wanhua Zheng. Narrow vertical beam divergence angle for display applications of 645 nm lasers[J]. Chinese Optics Letters, 2021, 19(10): 101401 Copy Citation Text show less
    References

    [1] M. M. He, S. Chen, Q. X. Na, S. J. Luo, H. Y. Zhu, Y. Li, C. W. Xu, D. Y. Fan. Watt-level Pr3+:YLF deep red laser pumped by a fiber-coupled blue LD module or a single-emitter blue LD. Chin. Opt. Lett., 18, 011405(2020).

    [2] T. Yagi, H. Nishiguchi, Y. Yoshida, M. Miyashita, M. Sasaki, Y. Sakamoto, K. Ono, Y. Mitsui. High-power high-efficiency 660-nm laser diodes for DVD-R/RW. IEEE J. Sel. Top. Quantum Electron., 9, 1260(2003).

    [3] C. Y. Chen, H. T. Chang, T. J. Chang, C. H. Chuang. Full-color and less-speckled modified Gerchberg–Saxton algorithm computer-generated hologram floating in a dual-parabolic projection system. Chin. Opt. Lett., 13, 110901(2015).

    [4] H. Kawanishi. IR/R/G/B laser diodes for multi-wavelength applications. Opt. Rev., 26, 152(2019).

    [5] Z. Y. Xu. Laser displays—new display technology for next generation. Laser Infrared, 36, 737(2006).

    [6] T. Nishida, K. Kuramoto, Y. Iwai, T. Fujita, T. Yagi. Multiemitter 638-nm high-power broad area laser diodes for display application. Opt. Eng., 58, 086113(2019).

    [7] M. Hagimoto, S. Miyamoto, Y. Kimura, H. Fukai, M. Hashizume, S. Kawanaka. USHIO 3.5W red laser diode for projector light source. Proc. SPIE, 10939, 109391I(2019).

    [8] K. Paschkel, G. Blume, D. Feise, J. Pohl, B. Sumpf. Watt-level red-emitting diode lasers and modules for display applications. Opt. Rev., 23, 146(2016).

    [9] B. Sverdlov, H.-U. Pfeiffer, E. Zibik, S. Mohrdiek, T. Pliska, M. Agresti, N. Lichtenstein. Optimization of fiber coupling in ultra-high power pump modules at λ = 980 nm. Proc. SPIE, 8605, 860508(2013).

    [10] P. Unger, G.-L. Bona, R. Germann, P. Roentgen, D. J. Webb. Low-threshold strained GaInP quantum-well ridge lasers with AlGaAs cladding layers. IEEE J. Quantum Electron., 29, 1880(1993).

    [11] K. Hamada, M. Wada, H. Shimizu, M. Kume, F. Susa, T. Shibutani, N. Yoshikawa, K. Itoh, G. Kano, I. Teramoto. A 0.2 W CW laser with buried twin-ridge substrate structure. IEEE J. Quantum Electron., 21, 623(1985).

    [12] N. B. Zvonkov, B. N. Zvonkov, A. V. Ershov, E. A. Uskova, G. A. Maksimov. Semiconductor lasers emitting at the 0.98 µm wavelength with radiation coupling-out through the substrate. Quantum Electron., 28, 605(1998).

    [13] V. Shchukin, N. Ledentsov, K. Posilovic, V. Kalosha, T. Kettler, D. Seidlitz, M. Winterfeldt, D. Bimberg, N. Y. Gordeev, L. Y. Karachinsky, I. I. Novikov, Y. M. Shernyakov, A. V. Chunareva, M. V. Maximov, F. Bugge, M. Weyers. Tilted wave lasers: a way to high brightness sources of light. IEEE J. Quantum Electron., 47, 1014(2011).

    [14] S. Zhao, A. Qi, M. Wang, H. Qu, Y. Lin, F. Dong, W. Zheng. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity. Opt. Express, 26, 3518(2018).

    [15] L. Liu, H. Qu, Y. Liu, Y. Wang, A. Qi, X. Guo, P. Zhao, Y. Zhang, W. Zheng. Design and analysis of laser diodes based on the longitudinal photonic band crystal concept for high power and narrow vertical divergence. IEEE J. Sel. Top. Quantum Electron, 21, 1900107(2015).

    [16] P. M. Smowton, G. M. Lewis, M. Yin, H. D. Summers, G. Berry, C. C. Button. 650-nm lasers with narrow far-field divergence with integrated optical mode expansion layers. IEEE J. Sel. Top. Quantum Electron, 5, 735(1999).

    [17] B. Qiu, O. P. Kowalski, S. McDougall, B. Schmidt, J. H. Marsh. High-performance red lasers with low beam divergence. IEEE Photon. J., 1, 172(2009).

    [18] P. M. Smowton, S. N. Elliott. Manufacturing-tolerant compact red-emitting laser diode designs for next generation applications. IET Optoelectron., 9, 75(2015).

    [19] B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, H. Cao. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Natl. Acad. Sci. USA, 112, 1304(2015).

    [20] K. Kim, S. Bittner, Y. Zeng, SF. Liew, Q. Wang, H. Cao. Electrically pumped semiconductor laser with low spatial coherence and directional emission. Appl. Phys. Lett., 115, 071101(2019).

    [21] Y. Jia, Y. Wang, L. Xu, S. Zhao, A. Qi, W. Zheng. Low-spatial coherence electrically pumped red-emitting semiconductor laser. Proc. SPIE, 10812, 108120V(2018).

    [22] L. Xu, Y. Wang, Y. Jia, W. Zheng. Low-coherence, high-power, high-directional electrically driven dumbbell-shaped cavity semiconductor laser at 635 nm. Opt. Lett., 45, 5097(2020).

    [23] M. A. Afromowitz. Refractive index of Ga1−xAlxAs. Solid State Commun., 15, 59(1974).

    [24] G. Hatakoshi, K. Itaya, M. Ishikawa, M. Okajima, Y. Uematsu. Short-wavelength InGaAlP visible laser diodes. IEEE J. Quantum Electron., 27, 1476(1991).

    [25] D. P. Bour. Strained GaxIn1-xP-(AlGa)0.5In0.5P heterostructures and quantum-well laser diodes. IEEE J. Quantum Electron., 30, 593(1994).

    Yufei Jia, Yufei Wang, Xuyan Zhou, Linhai Xu, Pijie Ma, Jingxuan Chen, Hongwei Qu, Wanhua Zheng. Narrow vertical beam divergence angle for display applications of 645 nm lasers[J]. Chinese Optics Letters, 2021, 19(10): 101401
    Download Citation