• High Power Laser Science and Engineering
  • Vol. 11, Issue 1, 010000e9 (2023)
M. J. V. Streeter1、*, C. Colgan2, C. C. Cobo3, C. Arran3, E. E. Los2, R. Watt2, N. Bourgeois4, L. Calvin1, J. Carderelli5, N. Cavanagh1, S. J. D. Dann4, R. Fitzgarrald5, E. Gerstmayr2, A. S. Joglekar5、6, B. Kettle2, P. Mckenna7, C. D. Murphy3, Z. Najmudin2, P. Parsons4, Q. Qian5, P. P. Rajeev4, C. P. Ridgers3, D. R. Symes4, A. G. R. Thomas5, G. Sarri1, and S. P. D. Mangles2
Author Affiliations
  • 1School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
  • 2The John Adams Institute for Accelerator Science, Imperial College London, London, UK
  • 3York Plasma Institute, School of Physics, Engineering and Technology, University of York, York, UK
  • 4Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
  • 5Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA
  • 6Ergodic LLC, San Francisco, USA
  • 7Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
  • show less
    DOI: 10.1017/hpl.2022.47 Cite this Article Set citation alerts
    M. J. V. Streeter, C. Colgan, C. C. Cobo, C. Arran, E. E. Los, R. Watt, N. Bourgeois, L. Calvin, J. Carderelli, N. Cavanagh, S. J. D. Dann, R. Fitzgarrald, E. Gerstmayr, A. S. Joglekar, B. Kettle, P. Mckenna, C. D. Murphy, Z. Najmudin, P. Parsons, Q. Qian, P. P. Rajeev, C. P. Ridgers, D. R. Symes, A. G. R. Thomas, G. Sarri, S. P. D. Mangles. Laser wakefield accelerator modelling with variational neural networks[J]. High Power Laser Science and Engineering, 2023, 11(1): 010000e9 Copy Citation Text show less

    Abstract

    A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
    $$\begin{align}{\mathrm{\mathcal{L}}}_{\rm T} &= {\mathrm{\mathcal{L}}}_{\mathrm{MSE}}-\beta {D}_{\mathrm{KL}},\nonumber\\ {}{\mathrm{\mathcal{L}}}_{\rm T} &= \frac{1}{N}\sum \limits_{n = 0}^N{\left[W\left({E}_n\right)-{W}_{\rm R}\left({E}_n\right)\right]}^2-\beta {D}_{\mathrm{KL}},\end{align}$$ ((1))

    View in Article

    M. J. V. Streeter, C. Colgan, C. C. Cobo, C. Arran, E. E. Los, R. Watt, N. Bourgeois, L. Calvin, J. Carderelli, N. Cavanagh, S. J. D. Dann, R. Fitzgarrald, E. Gerstmayr, A. S. Joglekar, B. Kettle, P. Mckenna, C. D. Murphy, Z. Najmudin, P. Parsons, Q. Qian, P. P. Rajeev, C. P. Ridgers, D. R. Symes, A. G. R. Thomas, G. Sarri, S. P. D. Mangles. Laser wakefield accelerator modelling with variational neural networks[J]. High Power Laser Science and Engineering, 2023, 11(1): 010000e9
    Download Citation