• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 6, 749 (2021)
Si-Yu LIU1、2, De-Hai ZHANG1、*, Jin MENG1, Guang-Yu JI2, Hao-Tian ZHU1, Xiao-Xiang HOU3, and Qing-Feng ZHANG3
Author Affiliations
  • 1Key Laboratory of Microwave Remote Sensing,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China
  • 2University of Chinese Academy of Sciences,Beijing 100049,China
  • 3Southern University of Science and Technology,Shenzhen 518055,China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.06.007 Cite this Article
    Si-Yu LIU, De-Hai ZHANG, Jin MENG, Guang-Yu JI, Hao-Tian ZHU, Xiao-Xiang HOU, Qing-Feng ZHANG. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749 Copy Citation Text show less
    References

    [1] P H Siegel. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 50, 910-928(2002).

    [2] D Jasteh, E G Hoare, M Cherniakov et al. Experimental low-terahertz radar image analysis for automotive terrain sensing. IEEE Geoscience and Remote Sensing Letters, 13, 490-494(2016).

    [3] P H Siegel. Terahertz technology in biology and medicine, 1575-1578(2004).

    [4] P H Siegel. THz instruments for space. IEEE Transactions on Antennas and Propagation, 55, 2957-2965(2007).

    [5] Z Chen, X Y Ma, B Zhang et al. A survey on terahertz communications. China Communications, 16, 1-35(2019).

    [6] H Song, T Nagatsuma. Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1, 256-263(2011).

    [7] Z Zhang, B Monosmith. Dual-643 GHz and 874 GHz airborne radiometers for ice cloud measurements(2008).

    [8] P Maagt de. Terahertz technology for space and EARTH applications, 111-115(2007).

    [9] Ge LIU, Bo ZHANG, Li-Sen ZHANG et al. 0.42 THz subharmonic mixer based on 3D precisely modeled diode. Journal of infrared and millimeter waves, 37, 338-343(2018).

    [10] J D Albrecht, M J Rosker, H B Wallace et al. THz electronics projects at DARPA: Transistors, TMICs, and amplifiers(2010).

    [11] Jun JIANG, Yue HE, Cheng WANG et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter. Journal of Infrared Millimeter Waves, 35, 418-424(2016).

    [12] Guang-Yu JI, De-Hai ZHANG, Jin Meng et al. Design of a 670 GHz fourth-harmonic mixer based on Schottky diode. Journal of Infrared Millimeter Waves, 38, 695-700(2019).

    [13] Yan-Fei MAO, E Shi-Ju, Klaus SCHMALZ, Klaus SCHMALZ等. 一种低功耗245 GHz次谐波接收机. 红外与毫米波学报, 38, 739-744(2019).

          et alA low power 245 GHz subharmonic receiver. Journal of Infrared Millimeter Waves, 38, 739-744(2019).

    [14] Ge LIU, Bo ZHANG, Li-Sen ZHANG et al. 330 GHz GaAs monolithic integrated sub-harmonic mixer. Journal of infrared and millimeter waves, 36, 252-256(2017).

    [15] B Thomas, A Maestrini, J Gill et al. A broadband 835∼900 GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes. IEEE Transactions on Microwave Theory and Techniques, 58, 1917-1924(2010).

    [16] B Thomas, A Maestrini, D Matheson et al. Design of an 874 GHz biasable sub-harmonic mixer based on MMIC membrane planar schottky diodes(2008).

    [17] Bo ZHANG, Xiao-Lin LV, Jie HE et al. 1.1 THz tenth harmonic mixer based on planar GaAs Schottky diode. IET Microwaves, Antennas & Propagation, 13(2019).

    [18] Y Zhang, W Zhao, Y F Wang et al. A 220 GHz subharmonic mixer based on Schottky diodes with an accurate terahertz diode model. Microwave and Optical Technology Letters, 58, 2311-2316(2016).

    [19] E Schlecht, V J Siles, C Lee et al. Schottky diode based 1.2 THz receivers operating at room-temperature and below for planetary atmospheric sounding. IEEE Transactions on Terahertz Science and Technology, 4, 661-669(2014).

    [20] A Y Tang, J Stake. Impact of eddy currents and crowding effects on high-frequency losses in planar Schottky diodes. IEEE Transactions on Electron Devices, 58, 3260-3269(2011).

    [21] T H Ren, Y Zhang, S Liu et al. A Study of the parasitic properties of the Schottky barrier diode. Journal of Infrared Millimeter and Terahertz Waves, 38, 143-154(2017).

    [22] A Y Tang, V Drakinskiy, K Yhland et al. Analytical extraction of a Schottky diode model from broadband S-Parameters. IEEE Transactions on Microwave Theory and Techniques, 61, 1870-1878(2013).

    [23] A Y Tang, T Bryllert, J Stake. Geometry optimization of THz sub-harmonic Schottky mixer diodes(2012).

    [24] L W Qi, X Y Liu, J Meng et al. Improvements in reverse breakdown characteristics of THz GaAs Schottky barrier varactor based on metal-brim structure. Chinese Physics B, 29, 057306-5(2020).

    [25] J Q Ding, A Maestrini, L Gatilova et al. A 300 GHz power-combined frequency doubler based on E-plane 90°-hybrid and Y-junction. Microwave Optical Technology Letters, 62, 2683-2691(2020).

    [26] Q Xue, M S Kam, H C Chi. Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications. IEEE Transactions on Microwave Theory and Techniques, 51, 1449-1454(2003).

    Si-Yu LIU, De-Hai ZHANG, Jin MENG, Guang-Yu JI, Hao-Tian ZHU, Xiao-Xiang HOU, Qing-Feng ZHANG. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749
    Download Citation