• Infrared and Laser Engineering
  • Vol. 51, Issue 2, 20220086 (2022)
Ran Ye1、2, Chu Xu1, Fen Tang1, Qingqing Shang1, Yao Fan2, Jiaji Li2, Yonghong Ye1, and Chao Zuo2、*
Author Affiliations
  • 1School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
  • 2School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.3788/IRLA20220086 Cite this Article
    Ran Ye, Chu Xu, Fen Tang, Qingqing Shang, Yao Fan, Jiaji Li, Yonghong Ye, Chao Zuo. Simulation of the near-field focusing and the far-field imaging of microspherical lenses: A review[J]. Infrared and Laser Engineering, 2022, 51(2): 20220086 Copy Citation Text show less
    References

    [1] E Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für Mikroskopische Anatomie, 9, 413-418(1873).

    [2] O Shimomura, F H Johnson, Y Saiga. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of Cellular Physiology, 59, 223-239(1962).

    [3] H Giloh, J W Sedat. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science, 217, 1252-1255(1982).

    [4] R H Webb. Confocal optical microscopy. Reports on Progress in Physics, 59, 427(1996).

    [5] D Axelrod. Total internal reflection fluorescence microscopy in cell biology. Traffic, 2, 764-774(2001).

    [6] Diaspro A. Confocal TwoPhoton Microscopy: Foundations, Applications Advances[M]. Hoboken: WileyLiss, 2001.

    [7] W R Zipfel, R M Williams, W W Webb. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 21, 1369-1377(2003).

    [8] J Huisken, J Swoger, F D Bene, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [9] O E Olarte, J Andilla, E J Gualda, et al. Light-sheet microscopy: A tutorial. Advances in Optics and Photonics, 10, 111-179(2018).

    [10] S W Hell, J Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [11] E Betzig, G H Patterson, R Sougrat, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [12] M J Rust, M Bates, X Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793-796(2006).

    [13] D J Stephens, V J Allan. Light microscopy techniques for live cell imaging. Science, 300, 82-86(2003).

    [14] D Evanko. Label-free microscopy. Nature Methods, 7, 36(2010).

    [15] T A Zangle, M A Teitell. Live-cell mass profiling: An emerging approach in quantitative biophysics. Nature Methods, 11, 1221-1228(2014).

    [16] F Zernike. Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9, 686-698(1942).

    [17] R Zhou, M Wu, F Shen, et al. Super-resolution microscopic effect of microsphere based on the near-field optics. Acta Physica Sinca, 66, 140702(2017).

    [18] D Vobornik, S Vobornik. Scanning near-field optical microscopy. Bosnian Journal of Basic Medical Sciences, 8, 63-71(2008).

    [19] J Y Lee, B H Hong, W Y Kim, et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature, 460, 498-501(2009).

    [20] Z Wang, W Guo, L Li, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nature Communications, 2, 218(2011).

    [21] X Hao, C Kuang, X Liu, et al. Microsphere based microscope with optical super-resolution capability. Applied Physics Letters, 99, 20310(2011).

    [22] A Darafsheh, G F Walsh, L D Negro, et al. Optical super-resolution by high-index liquid-immersed microspheres. Applied Physics Letters, 101, 141128(2012).

    [23] A Vlad, I Huynen, S Melinte. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles. Nanotechnology, 23, 285708(2012).

    [24] S Lee, L Li. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy. Optics Communications, 334, 253-257(2015).

    [25] Y Yan, L Li, C Feng, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum. ACS Nano, 8, 1809-1816(2014).

    [26] F Wang, L Liu, H Yu, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nature Communications, 7, 13748(2016).

    [27] G Jin, H Bachman, T D Naquin, et al. Acoustofluidic scanning nanoscope with high resolution and large field of view. ACS Nano, 14, 8624-8633(2020).

    [28] T Zhang, H Yu, P Li, et al. Microsphere-based super-resolution imaging for visualized nanomanipulation. ACS Applied Materials & Interfaces, 12, 48093-48100(2020).

    [29] H Luo, H Yu, Y Wen, et al. Enhanced high-quality super-resolution imaging in air using microsphere lens group. Optics Letters, 45, 2981-2984(2020).

    [30] W Fan, B Yan, Z Wang, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies. Science Advances, 2, e1600901(2016).

    [31] X Chen, T Wu, Z Gong, et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses. Photonics Research, 8, 225-234(2020).

    [32] R Ye, Y-H Ye, H F Ma, et al. Experimental far-field imaging properties of a ~5-µm diameter spherical lens. Optics Letters, 38, 1829-1831(2013).

    [33] R Ye, Y-H Ye, H F Ma, et al. Experimental imaging properties of immersion microscale spherical lenses. Scientific Reports, 4, 3769(2014).

    [34] M Guo, Y-H Ye, J Hou, et al. Experimental far-field imaging properties of high refractive index microsphere lens. Photonics Research, 3, 339-342(2015).

    [35] S Yang, F Wang, Y-H Ye, et al. Influence of the photonic nanojet of microspheres on microsphere imaging. Optics Express, 25, 27551-27558(2017).

    [36] F Wang, S Yang, H Ma, et al. Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion. Applied Physics Letters, 112, 023101(2018).

    [37] S Yang, X Wang, J Wang, et al. Reduced distortion in high-index microsphere imaging by partial immersion. Applied Optics, 57, 7818-7822(2018).

    [38] S Yang, Y Cao, Q Shi, et al. Label-free super-resolution imaging of transparent dielectric objects assembled on silver film by a microsphere-assisted microscope. Journal of Physical Chemistry C, 123, 28353-28358(2019).

    [39] Y Cao, S Yang, J Wang, et al. Surface plasmon enhancement for microsphere-assisted super-resolution imaging of metallodielectric nanostructures. Journal of Applied Physics, 127, 233103(2020).

    [40] S Yang, Y-H Ye, Q Shi, et al. Converting evanescent waves into propagating waves: The super-resolution mechanism in microsphere-assisted microscopy. Journal of Physical Chemistry C, 124, 25951-25956(2020).

    [41] Y Wang, S Guo, D Wang, et al. Resolution enhancement phase-contrast imaging by microsphere digital holography. Optics Communications, 366, 81-87(2016).

    [42] A Leong-Hoi, C Hairaye, S Perrin, et al. High resolution microsphere-assisted interference microscopy for 3 D characterization of nanomaterials. Physica Status Solidi A, 215, 1700858(2018).

    [43] Z Xie, S Hu, Y Tang, et al. 3 D super-resolution reconstruction using microsphere-assisted structured illumination microscopy. IEEE Photonics Technology Letters, 31, 1783-1786(2019).

    [44] L Chen, Y Zhou, Y Li, et al. Microsphere enhanced optical imaging and patterning: From physics to applications. Applied Physics Reviews, 6, 021304(2019).

    [45] Y Duan, G Barbastathis, B Zhang. Classical imaging theory of a microlens with super-resolution. Optics Letters, 38, 2988-2990(2013).

    [46] T X Hoang, Y Duan, X Chen, et al. Focusing and imaging in microsphere-based microscopy. Optics Express, 23, 12337-12353(2015).

    [47] Q Shang, F Tang, L Yu, et al. Super-resolution imaging with patchy microspheres. Photonics, 8, 513(2021).

    [48] B S Luk’Yanchuk, R Paniagua-Domínguez, I V Minin, et al. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow. Optical Materials Express, 7, 1820-1847(2017).

    [49] H Yang, R Trouillon, G Huszka, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Letters, 16, 4862-4870(2016).

    [50] A Darafsheh. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Optics Letters, 42, 735(2017).

    [51] Chen X, Wu T, Gong Z, et al. Lipid lets as endogenous intracellular microlenses[J]. Light: Science & Applications, 2021, 10: 242.

    [52] L Yue, O V Minin, Z Wang, et al. Photonic hook: A new curved light beam. Optics Letters, 43, 771-774(2018).

    [53] I V Minin, O V Minin, G M Latyba, et al. Experimental observation of a photonic hook. Applied Physics Letters, 114, 031105(2019).

    [54] C Y Liu, H J Chung, H P E. Reflective photonic hook achieved by a dielectric-coated concave hemicylindrical mirror. Journal of the Optical Society of America B, 37, 2528-2533(2020).

    [55] I V Minin, O V Minin, C Y Liu, et al. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder. Optics Letters, 45, 4899-4902(2020).

    [56] G Gu, P Zhang, S Chen, et al. Inflection point: A perspective on photonic nanojets. Photonics Research, 9, 1157-1171(2021).

    [57] Y E Geints, I V Minin, O V Minin. Tailoring “photonic hook” from Janus dielectric microbar. Journal of Optics, 22, 065606(2020).

    [58] G Gu, L Shao, J Song, et al. Photonic hooks from Janus microcylinders. Optics Express, 27, 37771-37780(2019).

    [59] X Shen, G Gu, L Shao, et al. Twin photonic hooks generated by twin-ellipse microcylinder. IEEE Photonics Journal, 12, 1-9(2020).

    [60] F Tang, Q Shang, S Yang, et al. Generation of photonic hooks from patchy microcylinders. Photonics, 8, 466(2021).

    [61] A V Maslov, V N Astratov. Imaging of sub-wavelength structures radiating coherently near microspheres. Applied Physics Letters, 108, 051104(2016).

    [62] A V Maslov, V N Astratov. Optical nanoscopy with contact Mie-particles: Resolution analysis. Applied Physics Letters, 110, 261107(2017).

    [63] A V Maslov, V N Astratov. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets. Physical Review Applied, 11, 064004(2019).

    [64] L Y Yu, Z R Cyue, G D J Su. Three-stage full-wave simulation architecture for in-depth analysis of microspheres in microscopy. Optics Express, 28, 8862-8877(2020).

    [65] Hopkins H H. On the diffraction they of optical images[C]Proceedings of the Royal Society of London Series A, 1953, 217(1130): 408–432.

    [66] Astratov V. LabelFree SuperResolution Microscopy[M]. Berlin: Springer, 2019.

    [67] M K Kim. Principles and techniques of digital holographic microscopy. SPIE Reviews, 1, 018005(2010).

    [68] C Zuo, J Li, J Sun, et al. Transport of intensity equation: A tutorial. Optics and Lasers in Engineering, 135, 106187(2020).

    [69] Y Fan, J Li, L Lu, et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab). PhotoniX, 2, 19(2021).

    [70] Y Wu, H Shroff. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nature Methods, 15, 1011-1019(2018).

    Ran Ye, Chu Xu, Fen Tang, Qingqing Shang, Yao Fan, Jiaji Li, Yonghong Ye, Chao Zuo. Simulation of the near-field focusing and the far-field imaging of microspherical lenses: A review[J]. Infrared and Laser Engineering, 2022, 51(2): 20220086
    Download Citation