微球透镜近场聚焦及远场成像仿真研究进展

叶燃1.2,徐楚1,汤芬1,尚晴晴1,范瑶2,李加基2,叶永红1,左超2*

(1. 南京师范大学 计算机与电子信息学院, 江苏 南京 210023;

2. 南京理工大学 电子工程与光电技术学院, 江苏 南京 210094)

摘 要: 微球超分辨显微成像技术能够突破衍射极限并成倍提高传统光学显微镜的成像分辨率。因 其具有成像系统简单,可实时成像,无需荧光染料标记,能在白光照明条件下工作,且可与市场上成熟 的显微镜产品相兼容等优点,具有重要研究价值与广阔应用前景,发展潜力巨大。该技术发展至今已 取得了众多令人瞩目的研究成果,但现阶段的研究主要集中在微球超分辨成像规律、成像质量的提高、 微球的操控方法上。而针对微球透镜的超分辨成像机理与模型,目前尚未形成完善统一的认知与可靠 一致的解释。在此背景下,文中梳理归纳了微球透镜近场聚焦及远场成像机理、数学模型、仿真技术等 方面的研究工作,分析现有工作的意义与所存在的不足,指出该领域需要着重解决的问题,并对微球成 像技术未来的发展方向给予展望。

关键词:超分辨成像;光学传递函数;微球;光子纳米射流;成像仿真中图分类号:O438 文献标志码:A DOI: 10.3788/IRLA20220086

Simulation of the near-field focusing and the far-field imaging of microspherical lenses: A review

Ye Ran^{1,2}, Xu Chu¹, Tang Fen¹, Shang Qingqing¹, Fan Yao², Li Jiaji², Ye Yonghong¹, Zuo Chao^{2*}

(1. School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China;
 2. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: Microsphere-assisted super-resolution microscopy is an emerging technique which can be used to overcome the diffraction limit of conventional optical microscopes and significantly enhance their resolution. This technique is very promising for various applications because of the simplicity of its operation, its label-free and real-time imaging nature and its ability to be performed under white-light illumination with commercially available optical microscopes. Although there are many impressive results coming out along with the development of this technique, most studies are about the imaging properties, imaging quality improvement and manipulation of microspheres. A comprehensive theory on the super-resolution mechanism is still missing. Within this context, the progress of the microsphere's imaging theory and the numerical methods in simulating the near-field focusing and far-field imaging phenomenon of microspheres was reported in this paper. The challenges and the future of this technique were also discussed.

收稿日期:2022-02-07; 修订日期:2022-02-15

基金项目:国家自然科学基金 (62105156, 61905115, 62105151, 62175109, U21B2033); 江苏省基础研究计划前沿引领技术 (BK20192003); 江 苏省研究生科研与实践创新计划项目 (SJCX21_0580); 南京理工大学自主科研基金 (30920032101); 江苏省光谱成像与智能感知 重点实验室开放基金 (JSGP202105)

作者简介:叶燃,男,助理教授,博士后,主要从事超分辨显微成像、计算光学显微成像等方面的研究。

通讯作者: 左超, 男, 教授, 博士生导师, 博士, 主要从事计算光学显微成像与快速三维传感等方面的研究。

Key words: super-resolution imaging; optical transfer function; microsphere; photonic nanojet; imaging simulation

0 引 言

自 16 世纪末第一台光学显微镜在荷兰问世以 来,光学显微技术经历了不断的革新。它已经从简单 的单透镜成像装置发展成为了一种极为重要且精密 的观察与计量科学仪器,广泛地应用于生物、化学、 物理、冶金、酿造、医学等各种科研活动,对人类的发 展做出了巨大而卓越的贡献。特别是在生命科学领 域,光学显微技术引领着人类打开微生物世界的大 门,为生命科学研究与现代临床疾病诊断提供有力的 影像学依据,成为推动生命科学和基础医学进步不可 或缺的重要工具。

自诞生来,光学显微镜的发展一直所面临着一个 巨大挑战—"分辨率"。自恩斯特·阿贝 (Ernst Abbe) 1873年发表著名的阿贝分辨率极限公式以来[1],人们 一直认为显微镜的分辨率只有光波长的一半。对可 见光而言,这个数值最小约为200nm。于是,物理学 家很自然地将思路转向波长更短的射线,发明了电子 显微镜和X射线显微镜。这两种显微镜都能达到纳 米甚至更高的分辨率。可惜这两种显微镜都无法对 生物活体进行有效且无损的观测。1962年,下村修 (Osamu Shimomura)^[2]从生活在美国西海岸近海的翼 钟水母身上提取、鉴定出了绿色荧光蛋白。这种绿色 荧光蛋白使通过设备肉眼观察、追踪被标记的活体细 胞成为可能。荧光显微镜^[3]、激光共聚焦显微 镜^[4]、全内反射荧光显微镜^[5]、双/多光子荧光显微 镜[6-7]、光片显微镜[8-9]等的问世极大地促进了生命科 学研究水平的进步。这些技术允许检测非常微弱的 荧光信号,并以高特异性揭示样品的结构和功能特 性,为生物与医学研究带来了一场革命。2008年,诺 贝尔化学奖授予了绿色荧光蛋白,标志着以荧光蛋白 为基础的现代分子成像技术已经成为了当代生命科 学研究中与显微镜的发明相提并论的最重要的工具 之一。更加让人意想不到的是,荧光分子开关效应的 发现和单分子探测技术的出现,使连续观测单个荧光 分子行为而非其集合平均成为可能。受激发射损耗 显微镜 (STED)^[10]、光敏定位显微镜 (PALM)^[11]、随机 光学重建显微镜 (STORM)^[12] 等超分辨成像技术利用 荧光分子的受激辐射原理与光开关效应,绕开了一百 多年来似乎一直被认为是无法突破的阿贝衍射极限, 将光学显微技术带入到纳米尺度。2014年,诺贝尔化 学奖授予了超分辨率荧光显微技术,再一次展现了光 学显微技术在人类发展历程中以及未来发展方向上 的重要地位。

截止目前,荧光显微技术已逐步实现从 2D 宽场 到 3D 共聚焦/双光子与超分辨的跨越。然而这类方 法仍需要挑选具备合适发色团的样本,或者对样本进 行荧光标记处理以提高成像的特异性和衬度。实际 上,无论是哪种标记方法,都存在一定的局限性^[13]:首 先,荧光染色本身就是个复杂耗时的过程,且荧光标 记物不可避免地对细胞机体的正常代谢活动产生不 利影响;其次,激发光对细胞的光损伤较大,荧光基团 还存在光漂白的问题,这些阻碍了对细胞的长时间连 续观测;最后,细胞内某些重要组分,如小分子和脂类 的特异性不高,荧光标记往往只能突出部分生物分子 而难以获得细胞整体全貌。

在研究活细胞的动态过程及其各项生理活动时, 无标记 (Label-free) 显微是一种最为理想的探测手 段[14-15]。当光通过几乎透明的物体(如细胞)时,其振 幅几乎不变;然而透射光的相位则包含了关于样品的 重要信息,如形貌与折射率分布。1932年, Zernike 基 于这种想法发明了相差显微镜:利用光的衍射和干涉 特性并根据空间滤波的原理改变物光波的频谱相位, 成功将相位差转换成振幅差,从而极大地提高了透明 相位物体在光学显微镜下的可分辨性[16]。相衬法的 发明具有划时代的意义, Zernike 因此获得 1953 年的 诺贝尔物理学奖。同期,各类无标记显微技术也得到 了快速发展,例如用来观测散射物体的暗场显微镜, 用来观测晶体的偏振显微镜等,这些技术已在各类无 标记成像研究应用中无处不在。然而,这些技术从发 展初期到现在并没有经历太大的革新,且成像分辨率 仍然受到阿贝衍射极限的限制,无法实现超分辨成 像。不论是理论与技术方面的发展与荧光显微成像 相比都显著滞后。如何在"无标记"的前提下实现超

分辨显微成像,是目前显微镜技术发展亟待突破的一 大重点与难点。

1972年,近场扫描光学显微技术 (Near-field scanning optical microscopy, NSOM) 诞生了,其基本原 理是利用孔径小于入射光波长的针孔对样品表面倏 逝波进行收集。倏逝波是一种沿介质界面传播、振幅 垂直于界面的电磁波,其在传播过程中可携带物体的 高频率亚波长空间信息^[17]。NSOM 技术使得人们首 次能够突破光学衍射的限制,进行亚波长超分辨成 像。虽然 NSOM 技术的成像分辨率远优于传统光学 显微镜,但倏逝波的振幅在与样品表面垂直的传播方 向上会随距离的增大呈指数衰减,在该方向上的传播 距离只有入射波长量级。因此,必须在待测样品的近 场区探测,通过探针逐点扫描的方法进行成像,这也 使得整个系统复杂且成像缓慢,无法实现实时的生物 检测,极大限制了该技术的应用^[18]。

1 微球成像技术的发展与现状

2009年, 韩国浦项科技大学 (Pohang University of Science and Technology)的 J.-Y. Lee 等人首先报道了 微米透镜具有超分辨成像能力[19]。该团队通过化学 方法制备了直径 0.05~3 μm、厚度小于 0.8 μm 的 C28H24O8 (CHQ) 平凸透镜 (n=1.50), 并利用 CHQ 微透 镜成功在高倍物镜 (100×, 0.9 NA) 下对间隔 250 nm 和 220 nm 的 Pd/Cr 金属线条进行了显微成像, 从而证 明了 CHQ 微透镜的分辨能力已超越了 Abbe 分辨率 极限,可达到 0.34λ/NA。他们用时域有限差分法 (Finite difference time domain, FDTD)对 CHQ 微透镜 的近场聚焦现象进行了仿真研究,发现用 FDTD 法算 出的微透镜焦距远小于用光线追迹法算出的焦距 (图 1(a))。2011年,英国曼彻斯特大学 (University of Manchester)的 Z. Wang 等人^[20]利用直径 2~9 µm 的 SiO2 微球 (n=1.46) 结合 80×, 0.9 NA 的物镜成功在卤 素灯照明下实现了 50 nm 微结构的观测,其成像系统 分辨率能达到 \/8~\/14, 放大率介于 4~8 倍之间, 并通 过该成像系统成功分辨出了线宽 200 nm、间距 100 nm 的光栅结构,以及直径~50 nm、间距~50 nm 的 非周期圆孔结构 (图 1(b))。Wang 等人通过将直径 4.87 μm 的 SiO₂ 微球与直径 2.5 mm、高度 0.5 mm 的

SiO,固体浸没透镜进行对比发现微透镜的分辨能力 远超固体浸没透镜。同年,浙江大学刘旭团队发现当 在微球上滴加酒精后,酒精液膜厚度会因为蒸发现象 而逐渐减小到与微球直径相当或者小于微球直径,此 时微球的超能分辨成像质量会得到显著提升。利用 该方法,他们通过直径3 µm的 SiO,微球对蓝光光碟 表面条纹进行了对比度增强超分辨成像[21]。2012年, 美国北卡罗来纳大学夏洛特分校 (University of North Carolina at Charlotte)的 A. Darafsheh 发现 直径为 2~220 μm 的 BaTiO₃ 微球 (n~1.9~2.1) 在液体完全浸没 时同样具有超分辨成像能力,其分辨率最高能达到 $\lambda/7$,当微球的直径大于 50 µm 时,其分辨率约为 $\lambda/4$ 。 他们利用异丙醇完全浸没的 BaTiO, 微球成功实现了 对间距 150 nm、 直径 120 nm、 高度 30 nm 的周期性金 点阵的超分辨成像^[22]。此后,聚苯乙烯^[23]、TiO₂-BaO-ZnO 微球^[24] 等不同材料微球均被证实具有超分辨成 像能力,并相继衍生出了微球辅助共聚焦显微成像技 术[25]、扫描微球超分辨成像技术[26-27]等相关技术。

近年来,国内众多课题组也针对此方向开展了相 关研究工作:中国科学院沈阳自动化所刘连庆团队将 微球与原子力显微镜悬臂粘结,结合图像拼接技术实 现了非接触大面积扫描超分辨成像(图 1(c))^[26],并将 该方法拓展到微操控领域提高了可视化微操控的精 度[28]。其团队还研究了级联型微透镜组的成像特性, 并实现了无浸没高质量超分辨成像[29]。复旦大学武 利民团队通过自组装技术将粒径为15 nm的 TiO2颗 粒组装成直径 10 μm 的透镜,并实现了对 45 nm 微结 构的光学显微成像(图 1(d))^[30]。暨南大学李宝军团队 利用光力操控 C10H7Br 液滴, 通过改变液滴外形可对 其超分辨成像特性进行实时调控(图 1(e))^[31]。南京师 范大学叶永红课题组研究了 SiO2 微球和 BaTiO3 微球 的远场成像特性,建立了成像视场、放大率和物距之 间的关系[32-34],成像系统景深和光子射流长度之间的关系[35], 并采用半浸没结构提高了微球透镜的数值孔径和分 辨能力[36],改善了成像畸变[37],通过在基板表面制备 高反膜提高了成像对比度[38]。2020年,叶永红课题组 发现在样品表面沉积金属-介质膜也可提高微球成像 系统的分辨率和对比度^[39](图 1(f)),并对微球超分辨 成像的物理机制进行了研究^[40]。

图 1 (a) CHQ 透镜超分辨显微成像^[19]; (b) SiO₂ 微球超分辨显微成像^[20]; (c) 微球扫描超分辨显微成像^[26]; (d) TiO₂ 颗粒自组装超分辨显微成像^[30]; (e) 液体透镜超分辨显微成像^[31]; (f) 表面等离激元增强超分辨显微成像^[39]

Fig.1 (a) CHQ microlens-assisted super-resolution microscopy^[19]; (b) SiO₂ microsphere-assisted super-resolution microscopy^[20]; (c) Scanning microsphere super-resolution microscopy^[26]; (d) Self-assembled TiO₂ particles for super-resolution microscopy^[30]; (e) Liquid droplet-assisted super-resolution microscopy^[31]; (f) Surface plasmon resonance-enhanced super-resolution microscopy^[39]

根据上述工作可看出,相比于 NSOM 技术,微球 超分辨显微成像技术仅需在原有的显微光学系统中 加入直径几微米至几百微米的透明介质微球就能够 成倍提高传统光学显微镜的成像能力。此外,它还具 有宽场成像和无标记成像等显著优点,能在宽谱照明 条件下工作,并且可与市场上成熟的显微镜产品相兼 容,因此极具研究价值与应用前景,发展潜力巨大。

此外, 微球超分辨技术在光学测量领域也具有潜在的应用价值。2016年, 北京工业大学王大勇团队^[41] 将微球透镜用在数字全息显微技术中, 对一维和二维 光栅结构进行了测量, 并发现加入微球可显著提升数 字全息系统的横向分辨率。该项工作将微球的应用 从传统二维成像领域拓展到了三维测量领域。 2018年, 法国斯特拉斯堡大学 (University of Strasbourg) 的 A. Leong-Hoi 等人^[42]将直径 24 µm 的钠钙硅微球 (*n*=1.50) 引入相移干涉显微系统中, 并利用该系统对 多种样品的三维轮廓进行了测量, 将干涉显微系统的 横向分辨率提升了 4 倍, 并成功对周期为 300~400 nm 的硅基光栅结构、粒径为 200~300 nm 的银纳米颗 粒、周期为 900 nm 的波浪状微结构进行了三维轮廓 组^[43]将正弦调制的结构光通过直径 20 μm 的 SiO₂ 微 球聚焦到观测样品表面,以提升显微测量系统的分辨 率。通过该方法,他们成功对高度 150 nm、线宽 220 nm、周期 500 nm 的硅基光栅结构样品进行了超 分辨三维显微轮廓测量。

与微球超分辨成像的实验现象发现与应用技术 开发快速发展形成鲜明对比的是,微球超分辨成像的 物理机制现阶段仍存在一些争议,尚未有最终定论[44]。 Wang 认为微球能够超分辨的原因在于其具有光子纳 米射流现象。既然微球能将入射光波进行超聚焦,会 聚到亚波长尺度,那么根据光路可逆原则,超分辨精 细结构自然也应该能被微球传播到远场,而其成像过 程则与传统透镜一样,都是通过光的折射,将微球下 方样品的光信号传输到远场,并最终被高倍物镜接 收^[20]。Hao 和 Yang 认为携带物体高频信息的倏逝波 (Evanescen wave)本身并不能传播到远场,但微球可 与其在近场区域内发生耦合,正是该近场区域内的耦 合作用才是微球具有超分辨成像能力的关键,而通过 调节匹配介质层的形状和对样品表面进行金属化等 处理,可使得耦合作用得到增强,从而提高微球成像 质量^[25,39]。Duan 和 Hoang 通过仿真研究发现回音壁

共振模式 (Whispering gallery mode, WGM) 可提高微球的分辨率,因此他们认为微球的超分辨能力源于WGM 共振现象^[45-46]。

虽然上述工作给出了许多具有启发性的研究成 果,但是目前尚没有一套公认的理论能够完整且准确 解释微球透镜的超分辨效应。这致使该领域目前仍 缺少有效的方法来对微球透镜成像性能进行定量优 化以进一步提升其成像潜能。在此背景下,笔者们认 为有必要对现有的与微球透镜近场聚焦及远场成像 机理与模型相关的研究成果进行梳理与归纳,分析现 有工作的意义与不足,指出该领域未来需要着重解决 的重点问题,并对微球成像技术未来的发展方向给予 展望。

2 微球透镜的近场聚焦现象

微球透镜近场聚焦特性方面的研究目前主要是 通过求解麦克斯韦方程组计算出微球附近的电磁场 物理参数和光强空间分布,由于光波的衍射现象在微 透镜附近会变得非常显著,因此如标量衍射理论、光 线追迹等经典仿真手段不再适用。 在近场域的成像仿真需要根据矢量衍射理论才 能准确获得光场的物理参数,目前微球成像研究中常 用的商业软件有基于时域有限差分法的 Lumerical FDTD Solutions,基于有限元法的 COMSOL Multiphysics 以及基于有限积分法的 CST MICROWAVE STUDIO, 等等。因为近场域的全波矢量仿真对于电脑内存要 求很高,所以大部分课题组都采用二维仿真的手段来 进行计算,三维仿真通常只能在一个微小区域内进 行。远场域的成像仿真则可通过标量衍射理论里的 角谱传播等方法进行快速计算。因此,可以看出,近 场和远场域的光学仿真手段的主要区别在于是否需 要求解麦克斯韦方程组,并由此导致后期算法的不同 以及相应计算量的差异。

目前大部分课题组都是将微球近似为一个圆柱 体,研究该圆柱体一个剖面上的光场聚焦特性,并以 此近似看成为微球的聚焦特性。入射光波经微球会 聚后所形成的高强度光场又可根据其空间结构分为 两大类:具有轴对称结构的光子纳米射流(图 2(a))、 具有弯曲结构的光子钩(图 2(b))。

2.1 光子纳米射流

研究表明,当电磁波穿过具有与其波长可比拟尺 寸介质微粒时会产生一种特殊的电磁波会聚现象,并 在微粒背面阴影处产生狭长的光场,由于该光场的光 强空间分布形似飞机引擎喷射出的气流,因此又被称 为光子纳米射流 (Photonic nanojet, PNJ)。光子纳米射 流具有以下几个重要性质^[48]:(1)光束横截面的半高 全宽(Full width at half maximum, FWHM)可以小于光 学衍射极限,并沿传播方向传播2λ以上;(2)当微粒 与环境的折射率比值小于2时,直径在2λ~40λ范围内 的介质微柱或微球都可激发光子纳米射流;(3)光子 纳米射流的强度远高于激发光的强度;(4)位于光子 纳米射流中的纳米颗粒的背向散射信号可被增强几 个数量级。正因为光子纳米射流具有上述优点,其在 微纳制造、粒子探测及操控以及超分辨显微成像等领 域具有良好的应用前景。

PNJ 的亚波长聚焦现象能够显著提高光学成像 系统的分辨能力,实现无标记超分辨显微成像功能, 而微球透镜的成像特性也与其 PNJ 的特征参数有着 密切关联^[44]。2016年,瑞士洛桑联邦理工大学 (École Polytechnique Fédérale de Lausanne)的 H. Yang 等人发 现了微球 PNJ 的 FWHM 越小其分辨率越高^[49]。他们 利用直径 4.2~11.8 µm 的 BaTiO3 微球 (n=1.92) 对线 宽 120 nm, 间隔 100 nm 的光栅结构在水镜 (40×,0.8 NA) 观测下成功进行了超分辨成像,并发现直径 6~7 µm 的BaTiO, 微球所成的像具有最高的放大率 (M~5.95×), 通过算出了微球成像系统的点扩散函数 (Point spread function, PSF), 发现直径~6 µm 的 BaTiO₃ 微球分辨率 最高,而仿真结果也证实了该尺寸微球的 PNJ 具有最 小的 FWHM。2017年,南京师范大学叶永红团队发 现微球成像系统的可成像范围随 PNJ 长度的增加而 变长^{136]}。他们通过将微球包裹在聚二甲基硅氧烷 (Polydimethylsiloxane, PDMS)透明薄膜里,在落射式 明场显微成像系统下,对线宽为 200 nm、间距为 100 nm的光栅结构和周期为 960 nm的六角密排 (Hexagonally-close-packed, HCP)结构进行成像,发现 当微球直径从 5 µm 增大到 50 µm 时,其可成像范围 从 4 µm 增加到 25 µm,利用 FDTD 仿真发现微球的 PNJ长度也随其直径的增加从 2.9 μm 逐渐增大到 7.1 µm。2017年,美国宾夕法尼亚大学 (University of Pennsylvania)的 A. Darafsheh 发现微球 PNJ 的 FWHM 越小,其成像质量越高,而当微球与环境之间折射率 比值固定时,通过 FDTD 仿真可发现 PNJ 的 FWHM 随微球折射率的增大而减小,因此 BaTiO, 微球 (n~ 1.90) 比 SiO₂ 微球 (n~1.45) 具有更优异的成像性能^[50]。 2021年,暨南大学李宝军团队发现生物细胞同样可以 产生 PNJ 并实现超分辨成像的效果, 他们利用光镊技 术操控直径 0.5~40 μm 的人体脂肪细胞 (n~1.52), 成 功对细胞间和细胞内部的细胞骨架、溶酶体和腺病毒 荧光信号进行了超分辨探测和成像[51]。

2.2 光子钩

2018年, 英国班戈大学 (Bangor University) 王增

波课题组和俄罗斯托木斯克理工大学 (National Research Tomsk State University)Minin 课题组通过理 论计算发现了一种自弯曲光子射流[52], 2019年又通过 实验进行了验证[53]。该新型光子射流最窄处半宽约 为 0.45λ, 最强处光强可接近入射光强的 15 倍, 最大 弯曲角度可达 35°。如图 2(a) 所示,由于该光子射流 的光场空间分布形似弯钩,因此又被称为光子钩 (Photonic hook)。目前自弯曲光子射流的激发方式主 要有四种:(1)使光波与非对称粒子相作用,例如基于 梯形粒子的透射激发模式[52-53]和基于台阶镜面的反 射激发模式[54];(2)使用非对称入射光场,例如通过遮 光板使介质微柱部分区域处于挡板阴影处,在透射模 式下可激发自弯曲光子射流[55-56];(3)使光波穿过变 折射率粒子, 例如 Minin 课题组利用 Janus 立方体激 发自弯曲光子射流[57],南方科技大学邵理阳和深圳大 学宋军课题组利用 Janus 圆柱体激发自弯曲光子射流[58]; (4) 使光波与特殊形状对称粒子相作用, 例如基于孪 生双微柱结构的透射激发模式^[59],该模式可同时产生 两个自弯曲光子射流。

2021年,南京师范大学汤芬等人利用FDTD法对 补丁粒子的近场聚焦特性进行了仿真研究[60]。在该 项工作中,折射率为1.90的圆柱形 BaTiO, 微粒被分 别放置在空气 (n=1.00),水 (n=1.33) 和香柏油 (n= 1.52) 中, 微粒表面覆盖有 100 nm 厚的银膜。由于该 银膜就像在微粒表面打上补丁一样,因此这类微粒统 称为补丁微粒 (Patchy particle)。当用波长为 550 nm 的单色平面波对补丁 BaTiO, 微粒进行照射时, 会在 其背面阴影侧形成一道弯曲光束,即光子钩。微粒的 光子钩与其粒径大小和表面银膜覆盖率有着密切关 系。当其表面 1/2 面积被银膜覆盖时,光子钩弯曲角 度会随粒径的尺寸的减小而增大,因此直径 35 µm 和 10 µm 的微粒产生的光子钩所具有的弯曲角度分别 为 15.4°和 20.2°。而当银膜覆盖率减少到 1/4 时,直 径1µm的微粒仍然能将平面波会聚成为光子钩。利 用该方法,他们发现补丁 BaTiO, 微粒所能产生的光 子钩最大弯曲角度~28.4°,光强最强处的半高全 宽~0.36ん。

2021年,南京师范大学尚晴晴等人利用直径 ~35 μm 的补丁 BaTiO₃ 微球作为微透镜,对亚波长尺 度线状和点状微结构进行了显微成像,并发现补丁微

球可显著提高超分辨成像质量[47]。在该实验中,他们 首先利用倾斜镀膜法在微球表面蒸镀 100 nm 厚的银 膜,然后通过水流将微球转移到观测样品表面,最后 再用倍率 20×、NA=0.4 的物镜在传统明场落射式显 微镜 (Axio AX10, Carl Zeiss) 下对样品进行观测, 成功 观测到 BaTiO, 微球对样品表面微结构所形成的放大 的像,达到了超分辨成像效果。通过该补丁微球辅助 成像系统,他们对蓝光光碟表面线宽 200 nm,间距 100 nm 的周期性条纹和具有 HCP 结构的直径 230 nm 的 SiO₂颗粒阵列进行了成像,并发现银膜覆盖可使 得微球的成像对比度提高约~5倍(图 2(c))。此外,他 们还利用 FDTD 法仿真研究了银膜位置对微球近场 聚焦特性的影响,发现当覆盖微球表面 1/4 的银膜与 微球顶部夹角为0°~30°之间时,补丁微球的内部会形 成弯曲的聚焦光场,即光子钩(图 2(b))。而他们认为 光子钩的存在会产生近场倾斜照明的效果,因而可以 提高成像质量。

3 微球成像模型的建立与仿真

虽然通过分析 PNJ 可以解释微球成像实验中所 观测到的部分现象,例如像面位置和放大率的变化。 但是一个能将照明光源,样品信息,微球参数,以及后 端光学成像系统融合在一起的完善的微球成像理论 模型依然缺失。目前研究微球成像理论模型的文献 较少,由于计算量的限制,大部分工作都是通过求解 麦克斯韦方程组进行二维仿真,模拟微球对相邻点光 源的成像,以此来讨论微球成像系统的分辨率^[45-46,61-63], 将近场全波仿真和远场标量衍射理论相耦合的混合 模式的三维仿真技术近期才被提出^[64]。

3.1 二维仿真模型

2013 年, 新加坡国立大学 (National University of Singapore)和新加坡-麻省理工大学技术联盟 (Singapore-MIT Alliance for Research and Technology) 的Y.Duan等人曾尝试求解微球对两个非相干点光源 成像的米氏解,以此来解释其超分辨成像机理^[45]。该 项工作所研究的成像系统如图 3(a)所示,其中微球直 径为4.74 μm,折射率为1.46。Duan等人发现当微球 产生光学 WGM 模式共振时,其分辨能力会得到提 升。如图 3(b)所示,在WGM 共振模式下微球可分辨 间距 150 nm 的两个非相干点光源,当点光源间距减

图 3 (a) Duan 等人所利用的微球成像系统的示意图; (b) 其成像仿真 结果^[45]

Fig.3 (a) Schematic drawing of the microsphere imaging system used by Duan et al.; (b) The corresponding imaging simulation results^[45]

小到 100 nm 时则无法被分辨。由于该结果与实验观 测数据不符,因此 Duan 等人认为微球的超分辨能力 可能源于多种物理机制的共同作用。2015年,新加 坡-麻省理工大学技术联盟的 T. X. Hoang 等人尝试利 用平面波展开的多极子算法对直径 4.74 μm,折射率 1.46 的微球成像系统进行理论研究^[46],建立包含聚焦 和成像两方面的理论模型。Hoang 等人同样发现微 球在共振模式下具有较高的分辨能力,其分辨率最高 可达到 0.24λ,理论上可分辨间距为 98 nm,发射波长 为 402.292 nm 的两个相邻点光源。

2016年,俄罗斯下诺夫哥罗德国立大学(University of Nizhny Novgorod)的 A. V. Maslov和美国北卡罗来 纳大学夏洛特分校(University of North Carolina at Charlotte)的 V. N. Astratov对半径 3.2λ的微球(*n*= 1.4)成像系统进行了二维仿真^[61],其观测样品为微球 下方 0.16λ处的点光源,该方法可以得出与微球分辨 率,放大率以及像面位置有关的信息(图 4(a)~(e))。 Maslov等人发现光源相干性对微球分辨能力有显著

- 图 4 (a) 微球成像系统示意图; (b) 基于微球成像系统的二维仿真模型; (c) 微球对离轴单个点光源所成的像; (d) 微球对轴对称分布的两个点光源 所成的像; (e) 点光源模式 (反相位,同相位,非相干) 对微球成像系统分辨率的影响^[61]
- Fig.4 (a) Schematic drawing of the microsphere imaging system; (b) 2D simulation model based on microsphere imaging system; (c) The images of offaxis single point sources formed by microspheres; (d) The images formed by the microspheres for the two point sources distributed symmetrically along the optical axis; (e) The influence of the mode of the point sources (out of phase, in phase, incoherent) on the resolution of the microsphere imaging system^[61]

影响, 微球可以分辨出间距小于 λ/16 的两个相位相 差 π 的相干点光源, 但无法分辨同相位的相干点光 源, 对于非相干点光源微球的分辨率约为 λ/2。 2017年, 在上述模型的基础上, Maslov和 Astratov 又 研究了米氏共振 (Mie resonance) 对微球超分辨成像 的影响^[62], 如图 5(a)~(h) 所示, 他们发现在非共振状态 下的微球无法分辨出相距 λ/3 的两个点光源, 而在米 氏共振状态下, 微球分辨能力会得到显著提升, 直径 在 1~2λ 之间的微球 (n~2) 的极限分辨率约为 λ/4。

2019年, A. V. Maslov 和 V. N. Astratov 利用该模 型对微球聚焦 (图 6(a)) 和成像特性 (图 6(b)) 进行了 比较^[63]。他们认为入射光波经微球会聚后所产生的 聚焦光场即 PNJ, 而微球成像系统的 PSF 即微球对点 光源所成的像。仿真结果表明直径约为 4 μm 的微球 (*n*=1.40) 所产生的 PNJ 的 FWHM 为~0.32λ, PSF 的

- 图 5 (a)~(d) 米氏共振发生时微球对相邻两个点光源所成的像; (e)~(h) 无米氏共振时微球对这两个点光源所成的像^[62]
- Fig.5 (a)-(d) The images of the two neighboring point sources formed by microspheres when the microspheres are on Mie resonance;
 (e)-(h) The images of the two neighboring point sources formed by the microspheres when the microspheres are not on Mie resonance^[62]

- 图 6 (a) 通过仿真微透镜对平行光的聚焦现象可得出微透镜的光子 纳米射流;(b) 通过仿真微透镜对点光源的成像特性可得出微透 镜的点扩散函数^[63]
- Fig.6 (a) The photonic nanojet of a microlens can be obtained by simulating its focusing performance for plane waves; (b) The point spread function of a microlens can be obtained by simulating its imaging properties for point sources^[63]

FWHM 为~0.725λ。当微球直径增大到约 10 μm 时, 相应 PNJ 和 PSF 的 FWHM 也逐渐增大到 0.6λ 和 1.15λ,因此 PNJ 与 PSF 之间并没有定量关联。

3.2 三维仿真模型

上述方法都属于二维仿真技术,通过将微球简化 为圆柱来降低计算量,可是这不可避免的影响了结果 的准确性。2020年,台湾大学L.Y.Yu等人首先提出 了一种适用于微球成像系统的三维仿真方法^[64]。如 图 7(a)所示,该仿真方法可分为三个部分:首先通过 FDTD 法在微球附近区域进行全波矢量仿真,再利用 算法将微球附近的光场参数耦合到远场,然后在远场 区域通过角谱法和反向追迹算法得到样品经光学显 微系统后所成的像。通过该方法,Yu等人仿真了放 置于空气中的直径 4.6 µm,折射率 1.46 的 SiO₂ 微球 对间距 200~300 nm、波长 405 nm 的非相干点光源的 成像,计算出微球成像系统的分辨率约为 250 nm (图 7(b))。当利用微球观测金属光栅时,其成像系统

- 图 7 (a) 三维成像仿真的步骤; (i) 近场全波仿真, 近场-远场耦合算法, 远场成像仿真以及 (ii) 虚像仿真; (b) 微球对不同间距点光源的仿真成像效 果; (c) 微球对金属光栅结构成像仿真以及 (d) 相应的成像结果表明微球可分辨间距 75 nm 的金属线条; (e) 微球成像系统对金属样品有更 高的分辨率: (i), (iii) 金属微结构, (ii), (iv) 相同尺寸下的非金属微结构^[64]
- Fig.7 (a) The steps for the three-dimensional imaging simulation: (i) The near-field full-wave simulation, the near-to-far-field transformation, the farfield imaging simulation and (ii) the simulation for the formation of virtual images; (b) The simulated microsphere's imaging performance for the two point sources with various gaps between them; (c) The simulation of microsphere's imaging for metallic grating structures and (d) the corresponding simulation results show that the metallic lines with 75 nm separation can be resolved by the microsphere; (e) Microsphere imaging system has a higher resolution for metallic samples: (i), (iii) Metallic microstructures; (ii), (iv) Non-metallic microstructures with the same dimension^[64]

的分辨率可达到 75 nm, 成像畸变也可同时被仿真出来 (图 7(c), (d))。

此外,该仿真技术与其他方法显著不同的地方是可以仿真出样品材料属性对成像效果的影响。如 图 7(e)所示,当微球对尺寸相同,材料不同的微结构 进行成像时,金属样品具有更好的成像效果(图 7 (e) 中 (i),(iii)),而非金属样品的细节则无法被微球分辨 (图 7 (e) 中 (ii),(iv))。

4 现存问题及挑战

4.1 完整的光学传递函数模型尚未建立

对于传统显微镜成像系统而言,一般用傅里叶变 换和线性滤波来描述图像的生成。对于一个相干成 像来说,其为一个复振幅的线性系统;对非相干成像 来说,其为一个光强的线性系统。目前大部分对微球 成像模型的研究工作都集中在相干与非相干两个极 端情形,并侧重于点扩散函数分析,即认为由于成像 系统所成图像是系统点扩散函数与物体强度或者复 振幅分布函数的卷积,以此对微球透镜的分辨率进行 估计。而在一个实际的显微镜成像系统中,通常所面 对的是介于相干与非相干的部分相干照明。通过调 整显微镜聚光镜的孔径光阑尺寸可以方便地调节照 明的数值孔径,即改变照明的空间相干性。显微镜在 部分相干照明下的成像特性需借助于 Hopkins 的光学 传递函数理论^[65],即四维传递交叉系数来描述。如何 将此理论引入微球显微成像,建立其完整的光学传递 函数模型,并以此定量分析照明相干性对成像分辨率 与对比度的影响,仍是一个值得探究的问题。

4.2 影响成像的因素较为复杂

现有的成像系统模型与仿真方案计算得到的微 球透镜分辨率和实验测量的结果有时候能够基本符 合。但是由于受到微球种类、成像系统、成像样品、 微球直径等方面的影响,实验中获得的成像分辨率和 放大倍率都有所不同。此外除了倏逝波以及光子纳 米射流效应之外,其他的因素,如金属样品的表面等 离激元,微球表面的非理想粗糙结构、成像系统和微 球引入的像差与畸变等也会影响微球透镜超分辨成 像的实际表现。而完整的微球超分辨成像理论需要 考虑微球对入射光的聚焦、样品与聚焦光场的相互作 用以及散射光场所成的放大虚像^[66]。这说明不能仅 仅把微球成像看作传统成像在近场域的简单拓展,倘若能把这些因素全都考虑并进行数学建模,获得完整的微球透镜超分辨成像机制,将有望进一步促进该项技术的工程应用。

4.3 针对微球的成像系统设计方案尚不成熟

虽然现有的微球成像方案已取得了良好的超分 辨效果,但是引入微球会给后端成像系统带来额外球 差,造成纵向和横向分辨率的不同。虽然可以通过图 像处理技术进行像差校正,但是当用人眼直接观测时 就只能通过改进光学成像系统来减小像差。而微球 透镜近场域的作用关系未知,二维和三维点扩散函数 和传递函数还未进行深入探究,使得其在光学成像系 统设计以及像差校理论上尚不成熟。假以时日,一旦 这些问题得以解决,微球超分辨成像技术简单易实现 的本征优势,将在微纳米元件的检测材料科学以及生 物组织成像等领域迎来广阔的发展空间。

5 结 论

微球透镜与光学显微技术相结合,可以突破衍射 极限,将显微镜分辨率提升至百纳米甚至更高,该技 术发展至今已取得了众多令人瞩目的研究成果。其 技术简单,操作方便,易于实现,无标记,分辨率高,具 有广阔的应用和发展前景。如今,微球超分辨显微成 像技术也逐渐从实验室走向了市场,代表性产品有新 加坡国立大学洪明辉院士团队研制的 OptoNano-200(Phaos Technology) 和英国曼彻斯特大学李琳院士 团队推出的 NANORO-M(LIG Nanowise)。该领域现 阶段的科学研究仍主要集中在微球超分辨成像规律、 图像质量的提高、微球的操控方法上,而人们对微球 超分辨成像机理经久不息的讨论,以及对微球成像仿 真技术的不断尝试,都表明了该领域目前并没有形成 一个完善且统一的认知与可靠一致的解释。无论是 几何光学、倏逝波、光子纳米射流效应、光学回音壁 模式共振以及表面等离激元等等,都无法完全解释实 验中出现的一些现象,理论数据和实验结果存在一定 出入,完整的成像机制与模型仍在探索中。另外研究 者们进行实验时,微球的直径和类别、成像物镜、观 测样品、光照条件等实验条件不同,得到的图像放大 倍率和分辨率等参数也有所不同,因此评估超分辨图 像质量没有统一标准和方法。微球与样品在近场区

域是如何相互作用的,微球回音壁模式以及金属表面 等离激元是如何对微球超分辨成像性能产生影响的, 这些有待回答的问题表明目前仍然还有许多知识层 面的空白需要去填补。

微球超分辨显微成像技术未来路在何方? 在笔 者们看来,"计算光学显微成像"有望成为其未来的重 要发展方向之一。不同于传统光学显微成像的"所见 即所得",计算光学显微成像通过对照明与成像系统 人为引入可控的编码或者"扭曲"(如结构照明、孔径 编码、传递函数调制、探测器可控位移)等并作为先 验知识,目的是将物体或者场景更多的本质信息调制 到传感器所能拍摄到的原始图像信号中。在解调阶 段,基于几何光学、波动光学等理论基础上通过对场 景目标经光学系统成像再到探测器这一完整图像生 成过程建立精确的正向数学模型,再经求解该正向成 像模型的"逆问题",以计算重构(如相干解调、相位复 原、光场调控、压缩感知、单像素重建、反卷积、最优 化重建)的方式来获得场景目标的高质量的图像或者 所感兴趣的其他物理信息。计算成像将光学调控与 信息处理有机结合,有望为开发基于微球超分辨成像 技术的新应用提供新思路。但只有明确了微球透镜 的超分辨成像机制,理解了微球的作用方式,才能够 对微球显微成像系统进行精确的正向建模,实现关键 物理机理的数学模型化。这是将微球超分辨显微成 像技术从"所见即所得"迈向"计算成像"的关键一 步。一旦在此方向上取得了突破,可使其面临的关键 问题得以迎刃而解、并快速实现多模态成像并耦合进 入多种类型的光学系统,如数字全息显微镜[67]、非干 涉定量相位显微镜[68-69]、结构光超分辨荧光显微镜[70] 等。微球透镜超分辨显微成像的简单方便结合计算 光学显微成像的灵活可控,将有望将微球透镜超分辨 显微成像技术的应用空间极大的拓展,在工业检测、 材料表征、生物医学等领域占有属于自己的一席之 地。

参考文献:

- Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung [J]. Archiv für Mikroskopische Anatomie, 1873, 9: 413-418.
- [2] Shimomura O, Johnson F H, Saiga Y. Extraction, purification

and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. *Journal of Cellular Physiology*, 1962, 59: 223-239.

- [3] Giloh H, Sedat J W. Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate [J]. *Science*, 1982, 217(4566): 1252-1255.
- [4] Webb R H. Confocal optical microscopy [J]. Reports on Progress in Physics, 1996, 59: 427.
- [5] Axelrod D. Total internal reflection fluorescence microscopy in cell biology [J]. *Traffic*, 2001, 2: 764-774.
- [6] Diaspro A. Confocal and Two-Photon Microscopy: Foundations, Applications and Advances[M]. Hoboken: Wiley-Liss, 2001.
- [7] Zipfel W R, Williams R M, Webb W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. *Nature Biotechnology*, 2003, 21: 1369-1377.
- [8] Huisken J, Swoger J, Bene F D, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy
 [J]. *Science*, 2004, 305(5686): 1007-1009.
- [9] Olarte O E, Andilla J, Gualda E J, et al. Light-sheet microscopy: A tutorial [J]. *Advances in Optics and Photonics*, 2018, 10(1): 111-179.
- [10] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. *Optics Letters*, 1994, 19: 780-782.
- [11] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution [J]. *Science*, 2006, 313(1642): 1642-1645.
- [12] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) [J]. *Nature Methods*, 2006, 3: 793-796.
- [13] Stephens D J, Allan V J. Light microscopy techniques for live cell imaging [J]. *Science*, 2003, 300: 82-86.
- [14] Evanko D. Label-free microscopy [J]. *Nature Methods*, 2010, 7: 36.
- [15] Zangle T A, Teitell M A. Live-cell mass profiling: An emerging approach in quantitative biophysics [J]. *Nature Methods*, 2014, 11: 1221-1228.
- [16] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects [J]. *Physica*, 1942, 9: 686-698.
- [17] Zhou R, Wu M, Shen F, et al. Super-resolution microscopic effect of microsphere based on the near-field optics [J]. *Acta Physica Sinca*, 2017, 66: 140702. (in Chinese)
- [18] Vobornik D, Vobornik S. Scanning near-field optical microscopy [J]. Bosnian Journal of Basic Medical Sciences,

2008, 8: 63-71.

- [19] Lee J Y, Hong B H, Kim W Y, et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses [J]. *Nature*, 2009, 460: 498-501.
- [20] Wang Z, Guo W, Li L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope [J]. *Nature Communications*, 2011, 2: 218.
- [21] Hao X, Kuang C, Liu X, et al. Microsphere based microscope with optical super-resolution capability [J]. *Applied Physics Letters*, 2011, 99: 20310.
- [22] Darafsheh A, Walsh G F, Negro L D, et al. Optical superresolution by high-index liquid-immersed microspheres [J]. *Applied Physics Letters*, 2012, 101: 141128.
- [23] Vlad A, Huynen I, Melinte S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles [J]. *Nanotechnology*, 2012, 23(28): 285708.
- [24] Lee S, Li L. Rapid super-resolution imaging of sub-surface nanostructures beyond diffraction limit by high refractive index microsphere optical nanoscopy [J]. *Optics Communications*, 2015, 334: 253-257.
- [25] Yan Y, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum [J]. ACS Nano, 2014, 8: 1809-1816.
- [26] Wang F, Liu L, Yu H, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging [J]. *Nature Communications*, 2016, 7: 13748.
- [27] Jin G, Bachman H, Naquin T D, et al. Acoustofluidic scanning nanoscope with high resolution and large field of view [J]. ACS Nano, 2020, 14: 8624-8633.
- [28] Zhang T, Yu H, Li P, et al. Microsphere-based super-resolution imaging for visualized nanomanipulation [J]. ACS Applied Materials & Interfaces, 2020, 12(42): 48093-48100.
- [29] Luo H, Yu H, Wen Y, et al. Enhanced high-quality superresolution imaging in air using microsphere lens group [J]. *Optics Letters*, 2020, 45: 2981-2984.
- [30] Fan W, Yan B, Wang Z, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies [J]. *Science Advances*, 2016, 2: e1600901.
- [31] Chen X, Wu T, Gong Z, et al. Subwavelength imaging and detection using adjustable and movable droplet microlenses [J]. *Photonics Research*, 2020, 8: 225-234.
- [32] Ye R, Ye Y-H, Ma H F, et al. Experimental far-field imaging properties of a ~5-µm diameter spherical lens [J]. *Optics Letters*, 2013, 38: 1829-1831.

- [33] Ye R, Ye Y-H, Ma H F, et al. Experimental imaging properties of immersion microscale spherical lenses [J]. *Scientific Reports*, 2014, 4: 3769.
- [34] Guo M, Ye Y-H, Hou J, et al. Experimental far-field imaging properties of high refractive index microsphere lens [J]. *Photonics Research*, 2015, 3: 339-342.
- [35] Yang S, Wang F, Ye Y-H, et al. Influence of the photonic nanojet of microspheres on microsphere imaging [J]. *Optics Express*, 2017, 25: 27551-27558.
- [36] Wang F, Yang S, Ma H, et al. Microsphere-assisted superresolution imaging with enlarged numerical aperture by semiimmersion [J]. *Applied Physics Letters*, 2018, 112: 023101.
- [37] Yang S, Wang X, Wang J, et al. Reduced distortion in highindex microsphere imaging by partial immersion [J]. *Applied Optics*, 2018, 57: 7818-7822.
- [38] Yang S, Cao Y, Shi Q, et al. Label-free super-resolution imaging of transparent dielectric objects assembled on silver film by a microsphere-assisted microscope [J]. *Journal of Physical Chemistry C*, 2019, 123: 28353-28358.
- [39] Cao Y, Yang S, Wang J, et al. Surface plasmon enhancement for microsphere-assisted super-resolution imaging of metallodielectric nanostructures [J]. *Journal of Applied Physics*, 2020, 127: 233103.
- [40] Yang S, Ye Y-H, Shi Q, et al. Converting evanescent waves into propagating waves: The super-resolution mechanism in microsphere-assisted microscopy [J]. *Journal of Physical Chemistry C*, 2020, 124: 25951-25956.
- [41] Wang Y, Guo S, Wang D, et al. Resolution enhancement phasecontrast imaging by microsphere digital holography [J]. *Optics Communications*, 2016, 366: 81-87.
- [42] Leong-Hoi A, Hairaye C, Perrin S, et al. High resolution microsphere-assisted interference microscopy for 3 D characterization of nanomaterials [J]. *Physica Status Solidi A*, 2018, 215: 1700858.
- [43] Xie Z, Hu S, Tang Y, et al. 3 D super-resolution reconstruction using microsphere-assisted structured illumination microscopy
 [J]. *IEEE Photonics Technology Letters*, 2019, 31: 1783-1786.
- [44] Chen L, Zhou Y, Li Y, et al. Microsphere enhanced optical imaging and patterning: From physics to applications [J]. *Applied Physics Reviews*, 2019, 6: 021304.
- [45] Duan Y, Barbastathis G, Zhang B. Classical imaging theory of a microlens with super-resolution [J]. *Optics Letters*, 2013, 38: 2988-2990.
- [46] Hoang T X, Duan Y, Chen X, et al. Focusing and imaging in microsphere-based microscopy [J]. *Optics Express*, 2015, 23:

第2期

12337-12353.

- [47] Shang Q, Tang F, Yu L, et al. Super-resolution imaging with patchy microspheres [J]. *Photonics*, 2021, 8: 513.
- [48] Luk 'Yanchuk B S, Paniagua-Domínguez R, Minin I V, et al. Refractive index less than two: Photonic nanojets yesterday, today and tomorrow [J]. *Optical Materials Express*, 2017, 7(6): 1820-1847.
- [49] Yang H, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet [J]. *Nano Letters*, 2016, 16: 4862-4870.
- [50] Darafsheh A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy [J]. *Optics Letters*, 2017, 42: 735.
- [51] Chen X, Wu T, Gong Z, et al. Lipid droplets as endogenous intracellular microlenses[J]. *Light: Science & Applications*, 2021, 10: 242.
- [52] Yue L, Minin O V, Wang Z, et al. Photonic hook: A new curved light beam [J]. *Optics Letters*, 2018, 43: 771-774.
- [53] Minin I V, Minin O V, Latyba G M, et al. Experimental observation of a photonic hook [J]. *Applied Physics Letters*, 2019, 114: 031105.
- [54] Liu C Y, Chung H J, E H P. Reflective photonic hook achieved by a dielectric-coated concave hemicylindrical mirror [J]. *Journal of the Optical Society of America B*, 2020, 37: 2528-2533.
- [55] Minin I V, Minin O V, Liu C Y, et al. Experimental demonstration of a tunable photonic hook by a partially illuminated dielectric microcylinder [J]. *Optics Letters*, 2020, 45: 4899-4902.
- [56] Gu G, Zhang P, Chen S, et al. Inflection point: A perspective on photonic nanojets [J]. *Photonics Research*, 2021, 9: 1157-1171.
- [57] Geints Y E, Minin I V, Minin O V. Tailoring "photonic hook" from Janus dielectric microbar [J]. *Journal of Optics*, 2020, 22: 065606.
- [58] Gu G, Shao L, Song J, et al. Photonic hooks from Janus

microcylinders [J]. Optics Express, 2019, 27: 37771-37780.

- [59] Shen X, Gu G, Shao L, et al. Twin photonic hooks generated by twin-ellipse microcylinder [J]. *IEEE Photonics Journal*, 2020, 12(3): 1-9.
- [60] Tang F, Shang Q, Yang S, et al. Generation of photonic hooks from patchy microcylinders [J]. *Photonics*, 2021, 8: 466.
- [61] Maslov A V, Astratov V N. Imaging of sub-wavelength structures radiating coherently near microspheres [J]. *Applied Physics Letters*, 2016, 108: 051104.
- [62] Maslov A V, Astratov V N. Optical nanoscopy with contact Mie-particles: Resolution analysis [J]. *Applied Physics Letters*, 2017, 110: 261107.
- [63] Maslov A V, Astratov V N. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets [J]. *Physical Review Applied*, 2019, 11: 064004.
- [64] Yu L Y, Cyue Z R, Su G D J. Three-stage full-wave simulation architecture for in-depth analysis of microspheres in microscopy
 [J]. *Optics Express*, 2020, 28(6): 8862-8877.
- [65] Hopkins H H. On the diffraction theory of optical images[C]//Proceedings of the Royal Society of London Series A, 1953, 217(1130): 408–432.
- [66] Astratov V. Label-Free Super-Resolution Microscopy[M]. Berlin: Springer, 2019.
- [67] Kim M K. Principles and techniques of digital holographic microscopy [J]. SPIE Reviews, 2010, 1: 018005.
- [68] Zuo C, Li J, Sun J, et al. Transport of intensity equation: A tutorial [J]. *Optics and Lasers in Engineering*, 2020, 135: 106187.
- [69] Fan Y, Li J, Lu L, et al. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)
 [J]. *PhotoniX*, 2021, 2: 19.
- [70] Wu Y, Shroff H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging [J]. *Nature Methods*, 2018, 15(12): 1011-1019.