• Laser & Optoelectronics Progress
  • Vol. 59, Issue 6, 0617008 (2022)
Jie Hu1、2、3、*, Yongwei Guo1、2、3, and Haomiao Zhu1、2、3、**
Author Affiliations
  • 1CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou , Fujian 350002, China
  • 2Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen , Fujian 361021, China
  • 3College of Chemistry, Fuzhou University, Fuzhou , Fujian 350108, China
  • show less
    DOI: 10.3788/LOP202259.0617008 Cite this Article Set citation alerts
    Jie Hu, Yongwei Guo, Haomiao Zhu. Research Progress of Multi-Modal Contrast Agent in Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617008 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [3] Kennedy B F, Kennedy K M, Sampson D D. A review of optical coherence elastography: fundamentals, techniques and prospects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 272-288(2014).

    [4] Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 48, 1517001(2021).

    [5] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).

    [6] Hsieh Y S, Ho Y C, Lee S Y et al. Dental optical coherence tomography[J]. Sensors, 13, 8928-8949(2013).

    [7] Olsen J, Holmes J, Jemec G B E. Advances in optical coherence tomography in dermatology: a review[J]. Journal of Biomedical Optics, 23, 040901(2018).

    [8] Ali Z A, Karimi Galougahi K, Maehara A et al. Intracoronary optical coherence tomography 2018: current status and future directions[J]. JACC: Cardiovascular Interventions, 10, 2473-2487(2017).

    [9] Wang J F, Xu Y, Boppart S A. Review of optical coherence tomography in oncology[J]. Journal of Biomedical Optics, 22, 121711(2017).

    [10] Hu J, Sanz-Rodríguez F, Rivero F et al. Gold nanoshells: contrast agents for cell imaging by cardiovascular optical coherence tomography[J]. Nano Research, 11, 676-685(2018).

    [11] Si P, Yuan E, Liba O et al. Gold nanoprisms as optical coherence tomography contrast agents in the second near-infrared window for enhanced angiography in live animals[J]. ACS Nano, 12, 11986-11994(2018).

    [12] Assadi H, Demidov V, Karshafian R et al. Microvascular contrast enhancement in optical coherence tomography using microbubbles[J]. Journal of Biomedical Optics, 21, 076014(2016).

    [13] Cang H, Sun T, Li Z Y et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography[J]. Optics Letters, 30, 3048-3050(2005).

    [14] Marin R, Lifante J, Besteiro L V et al. Plasmonic copper sulfide nanoparticles enable dark contrast in optical coherence tomography[J]. Advanced Healthcare Materials, 9, e1901627(2020).

    [15] Hu J, Gorsak T, Martín Rodríguez E et al. Magnetic nanoplatelets for high contrast cardiovascular imaging by magnetically modulated optical coherence tomography[J]. ChemPhotoChem, 3, 503(2019).

    [16] Muñoz-Ortiz T, Hu J, Ortgies D H et al. Molecular imaging of infarcted heart by biofunctionalized gold nanoshells[J]. Advanced Healthcare Materials, 10, e2002186(2021).

    [17] Nahrendorf M, Sosnovik D E, French B A et al. Multimodality cardiovascular molecular imaging, part II[J]. Circulation. Cardiovascular Imaging, 2, 56-70(2009).

    [18] Huang D D, Qiu Q, Lin W Z et al. Recent advances in biomedical applications of dual-modality photoacoustic/ultrasound imaging technology[J]. The Journal of Light Scattering, 31, 1-10(2019).

    [19] Jaffer F A, Libby P, Weissleder R. Optical and multimodality molecular imaging: insights into atherosclerosis[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1017-1024(2009).

    [20] Hong G S, Antaris A L, Dai H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 1, 10(2017).

    [21] Yang F, Zhang Q Z, Huang S Y et al. Recent advances of near infrared inorganic fluorescent probes for biomedical applications[J]. Journal of Materials Chemistry B, 8, 7856-7879(2020).

    [22] Yoo H, Kim J W, Shishkov M et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo[J]. Nature Medicine, 17, 1680-1684(2011).

    [23] Hu J, Ortgies D H, Torres R A et al. Quantum dots emitting in the third biological window as bimodal contrast agents for cardiovascular imaging[J]. Advanced Functional Materials, 27, 1703276(2017).

    [24] Humar M, Yun S H. Intracellular microlasers[J]. Nature Photonics, 9, 572-576(2015).

    [25] Wu X Q, Chen Q S, Xu P Z et al. Nanowire lasers as intracellular probes[J]. Nanoscale, 10, 9729-9735(2018).

    [26] Martino N, Kwok S J J, Liapis A C et al. Wavelength-encoded laser particles for massively multiplexed cell tagging[J]. Nature Photonics, 13, 720-727(2019).

    [27] Li X Z, Zhang W, Wang W Y et al. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers[J]. Biomedical Optics Express, 11, 3659-3672(2020).

    [28] Cao J, Zhu B L, Zheng K F et al. Recent progress in NIR-II contrast agent for biological imaging[J]. Frontiers in Bioengineering and Biotechnology, 7, 487(2020).

    [29] Attia A B E, Balasundaram G, Moothanchery M et al. A review of clinical photoacoustic imaging: current and future trends[J]. Photoacoustics, 16, 100144(2019).

    [30] Fu Q R, Zhu R, Song J B et al. Photoacoustic imaging: contrast agents and their biomedical applications[J]. Advanced Materials, 31, e1805875(2019).

    [31] Hosseinaee Z, Tummon Simmons J A, Reza P H. Dual-modal photoacoustic imaging and optical coherence tomography[J]. Frontiers in Physics, 8, 616618(2021).

    [32] Chen F, Si P, de la Zerda A et al. Gold nanoparticles to enhance ophthalmic imaging[J]. Biomaterials Science, 9, 367-390(2021).

    [33] Jain P K, Lee K S, El-Sayed I H et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B, 110, 7238-7248(2006).

    [34] Nguyen V P, Qian W, Li Y X et al. Chain-like gold nanoparticle clusters for multimodal photoacoustic microscopy and optical coherence tomography enhanced molecular imaging[J]. Nature Communications, 12, 34(2021).

    [35] Nguyen V P, Li Y X, Henry J et al. Plasmonic gold nanostar-enhanced multimodal photoacoustic microscopy and optical coherence tomography molecular imaging to evaluate choroidal neovascularization[J]. ACS Sensors, 5, 3070-3081(2020).

    [36] Nguyen V P, Li Y X, Henry J et al. Gold nanorod enhanced photoacoustic microscopy and optical coherence tomography of choroidal neovascularization[J]. ACS Applied Materials & Interfaces, 13, 40214-40228(2021).

    [37] Wi J S, Park J, Kang H et al. Stacked gold nanodisks for bimodal photoacoustic and optical coherence imaging[J]. ACS Nano, 11, 6225-6232(2017).

    [38] Ahmad A, Kim J, Shemonski N D et al. Volumetric full-range magnetomotive optical coherence tomography[J]. Journal of Biomedical Optics, 19, 126001(2014).

    [39] Oldenburg A L, Blackmon R L, Sierchio J M. Magnetic and plasmonic contrast agents in optical coherence tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 22, 6803913(2016).

    [40] John R, Rezaeipoor R, Adie S G et al. In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 8085-8090(2010).

    [41] John R, Nguyen F T, Kolbeck K J et al. Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents[J]. Molecular Imaging and Biology, 14, 17-24(2012).

    [42] Davé D P, Milner T E. Optical low-coherence reflectometer for differential phase measurement[J]. Optics Letters, 25, 227-229(2000).

    [43] Zhang W, Li Y X, Nguyen V P et al. High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization[J]. Light: Science & Applications, 7, 103(2018).

    [44] Nguyen V P, Fan W, Zhu T et al. Long-term, noninvasive in vivo tracking of progenitor cells using multimodality photoacoustic, optical coherence tomography, and fluorescence imaging[J]. ACS Nano, 15, 13289-13306(2021).

    [45] Li Y, Jing J C, Qu Y Q et al. Fully integrated optical coherence tomography, ultrasound, and indocyanine green based fluorescence tri-modality system for intravascular imaging[J]. Biomedical Optics Express, 8, 1036-1044(2017).

    [46] Yang Y, Li X, Wang T H et al. Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization[J]. Biomedical Optics Express, 2, 2551-2561(2011).

    [47] Park J, Park B, Kim T Y et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e1920879118(2021).

    [48] Mu Y L, Chen X M, Liu X et al. Recent advances in molecular imaging of atherosclerotic plaque[J]. Imaging Science and Photochemistry, 37, 7-17(2019).

    [49] Zarschler K, Rocks L, Licciardello N et al. Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 1663-1701(2016).

    [50] Nam J, Won N, Bang J et al. Surface engineering of inorganic nanoparticles for imaging and therapy[J]. Advanced Drug Delivery Reviews, 65, 622-648(2013).

    [51] García K P, Zarschler K, Barbaro L et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system[J]. Small, 10, 2516-2529(2014).

    [52] Yang Z Y, Albrow-Owen T, Cui H X et al. Single-nanowire spectrometers[J]. Science, 365, 1017-1020(2019).

    Jie Hu, Yongwei Guo, Haomiao Zhu. Research Progress of Multi-Modal Contrast Agent in Optical Coherence Tomography[J]. Laser & Optoelectronics Progress, 2022, 59(6): 0617008
    Download Citation