• Chinese Optics Letters
  • Vol. 21, Issue 4, 040601 (2023)
Fanran Meng, Wenxiang Zhang, Xiaojun Liu, Fei Liu*, and Xian Zhou
Author Affiliations
  • School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    DOI: 10.3788/COL202321.040601 Cite this Article Set citation alerts
    Fanran Meng, Wenxiang Zhang, Xiaojun Liu, Fei Liu, Xian Zhou. Comparative analysis of temporal-spatial and time-frequency features for pattern recognition of φ-OTDR[J]. Chinese Optics Letters, 2023, 21(4): 040601 Copy Citation Text show less
    References

    [1] H. Meng, S. Wang, C. Gao, F. Liu. Research on recognition method of railway perimeter intrusions based on Φ-OTDR optical fiber sensing technology. IEEE Sens. J., 21, 9852(2021).

    [2] H. Wu, X. Liu, Y. Xiao, Y. Rao. A dynamic time sequence recognition and knowledge mining method based on the hidden Markov models (HMMs) for pipeline safety monitoring with Φ-OTDR. J. Light. Technol., 37, 4991(2019).

    [3] H. Wu, J. Chen, X. Liu, Y. Xiao, M. Wang, Y. Zheng, Y. Rao. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS. J. Light. Technol., 37, 4359(2019).

    [4] Y. Lu, T. Zhu, L. Chen, X. Bao. Distributed vibration sensor based on coherent detection of phase-OTDR. J. Light. Technol., 28, 3243(2010).

    [5] Z. Wang, Z. Pan, Q. Ye, B. Lu, Z. Fang, H. Cai, R. Qu. Novel distributed passive vehicle tracking technology using phase sensitive optical time domain reflectometer. Chin. Opt. Lett., 13, 100603(2015).

    [6] Y. Zhang, T. Zhou, Z. Ding, Y. Lu, X. Zhang, F. Wang, N. Zou. Classification of interference-fading tolerant Φ-OTDR signal using optimal peak-seeking and machine learning [Invited]. Chin. Opt. Lett., 19, 030601(2021).

    [7] H. Jia, S. Lou, S. Liang, X. Sheng. Event identification by F-ELM model for ϕ-OTDR fiber-optic distributed disturbance sensor. IEEE Sens. J., 20, 1297(2020).

    [8] H. Wu, B. Zhou, K. Zhu, C. Shang, H.-Y. Tam, C. Lu. Pattern recognition in distributed fiber-optic acoustic sensor using intensity and phase stacked convolutional neural network with data augmentation. Opt. Express, 29, 3269(2021).

    [9] M. Aktas, T. Akgun, M. U. Demircin, D. Buyukaydin. Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. Proc. SPIE, 10208, 102080G(2017).

    [10] Z. Wang, Z. Pan, Q. Ye, B. Lu, H. Cai, R. Qu, Z. Fang, H. Zhao. Vehicle tracking by φ-OTDR used in safety monitored areas. Opto-Electronics and Communications Conference (OECC), 1(2015).

    [11] H. Liu, F. Pang, L. Lv, X. Mei, Y. Song, J. Chen, T. Wang. True phase measurement of distributed vibration sensors based on heterodyne φ-OTDR. IEEE Photon. J., 10, 7101309(2018).

    [12] H. F. Taylor, C. E. Lee. Apparatus and method for fiber optic intrusion sensing. U.S. patent.

    [13] X. Chen, C. Xu. Disturbance pattern recognition based on an ALSTM in a long-distance φ-OTDR sensing system. Microw. Opt. Technol. Lett., 62, 168(2019).

    [14] M. Zhang, Y. Li, J. Chen, Y. Song, J. Zhang, M. Wang. Event detection method comparison for distributed acoustic sensors using φ-OTDR. Opt. Fiber Technol., 52, 101980(2019).

    [15] H. Wu, M. Yang, S. Yang, H. Lu, C. Wang, Y. Rao. A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access, 8, 119448(2020).

    [16] D. He, C. Liu, Z. Jin, R. Ma, Y. Chen, S. Shan. Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning. Energy, 239, 122108(2022).

    [17] M. Aktas, T. Akgun, M. U. Demircin, D. Buyukaydin. Deep learning based threat classification in distributed acoustic sensing systems. 25th Signal Processing and Communications Applications Conference (SIU), 1(2017).

    [18] C. Xu, J. Guan, M. Bao, J. Lu, W. Ye. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR. Opt. Eng., 57, 016103(2018).

    [19] Y. Shi, Y. Li, Y. Zhang, Z. Zhuang, T. Jiang. An easy access method for event recognition of φ-OTDR sensing system based on transfer learning. J. Light. Technol., 39, 4548(2021).

    [20] H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, Y. Rao. Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Φ-OTDR). J. Light. Technol., 33, 3156(2015).

    [21] Y. Wang, P. Wang, K. Ding, H. Li, J. Zhang, X. Liu, Q. Bai, D. Wang, B. Jin. Pattern recognition using relevant vector machine in optical fiber vibration sensing system. IEEE Access, 7, 5886(2019).

    [22] Z. Wang, S. Lou, S. Liang, X. Sheng. Multi-class disturbance events recognition based on EMD and XGBoost in φ-OTDR. IEEE Access, 8, 63551(2020).

    [23] Z. Wang, L. Li, H. Zheng, J. Liang, X. Wang, B. Lu, Q. Ye, H. Cai, R. Qu. Smart distributed acoustics/vibration sensing with dual path network. 26th International Conference on Optical Fiber Sensors, WF105(2018).

    [24] Y. Shi, S. Dai, T. Jiang, Z. Fan. A recognition method for multi-radial-distance event of φ-OTDR system based on CNN. IEEE Access, 9, 143473(2021).

    [25] Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, Y. Rao. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express, 24, 853(2016).

    [26] P. Khojasteh, L. A. Passos, T. Carvalho, E. Rezende, B. Aliahmad, J. P. Papa, D. K. Kumar. Exudate detection in fundus images using deeply-learnable features. Comput. Biol. Med., 104, 62(2019).

    [27] A. S. B. Reddy, D. S. Juliet. Transfer learning with ResNet-50 for malaria cell-image classification. International Conference on Communication and Signal Processing (ICCSP), 945(2019).

    [28] T. Zhou, X. Zhang, B. Kang, M. Chen. Multimodal fusion recognition for digital twin. Digit. Commun. Netw.(2022).

    Data from CrossRef

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    [1] Hanyu Zhao, Fei Liu, Guo Zhu, Jinhui Yuan, Xian Zhou.

    Fanran Meng, Wenxiang Zhang, Xiaojun Liu, Fei Liu, Xian Zhou. Comparative analysis of temporal-spatial and time-frequency features for pattern recognition of φ-OTDR[J]. Chinese Optics Letters, 2023, 21(4): 040601
    Download Citation