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1. Introduction

Distributed acoustic or vibration sensors (DASs/DVSs) have
been widely used in perimeter security'), pipeline safety
alarm'®?!, structure-health monitoring[4], and traffic control®,
due to their advantages, including simple structure, accurate
positioning ability, and ultralong sensing range for disturbance
detection. To date, only the disturbance location no longer meets
the requirements under complex and various scenarios, where
the identification of disturbance signals should be resolved for
future investigation or application!®. Utilizing the backscattered
signals and coherent detection, researchers can simultaneously
obtain the time, space, and frequency feature of disturbance sig-
nals imposed on optical fibers”” ') via the phase-sensitive time-
domain reflectometer (¢-OTDR) scheme, which is of great value
for pattern recognition.

@-OTDR was first proposed by Taylor et al in 199312,
Recently, numerous pattern recognition methods based on deep
learning have been applied to ¢-OTDR. Common algorithm
models include vector machine (SVM), long short-term
memory (LSTM), artificial neural networks!">'*!, and convolu-
tional neural networks (CNNs)!*). Among them, CNN is the
most representative of deep learning, which is currently mainly
used in image recognition and speech recognition. For example,
inverted residual CNN (IRCNN) uses inverted residual blocks to
save feature information, which greatly improves the accuracy of
feature classification '), Its accuracy far exceeds other types of
neural networks. In 2017, Aktas et al.l'”! used a short-time
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The phase-sensitive time-domain reflectometer (-OTDR) has been popularly used for events detection over a long period of
time. In this study, the events classification methods based on convolutional neural networks (CNNs) with different fea-
tures, i.e,, the temporal-spatial features and time-frequency features, are compared and analyzed comprehensively in
¢-0TDR. The developed CNNs aim at distinguishing three typical events: wind blowing, knocking, and background noise.
The classification accuracy based on temporal-spatial images is higher than that based on time-frequency images
(99.49% versus 98.23%). The work here sets a meaningful reference for feature extraction and application in the pattern
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Fourier transform (STFT) to extract the time-frequency infor-
mation of the signal with CNN to identify and classify walking,
digging, strong wind, and equipment noise in ¢-OTDR. The
accuracy is over 93%. In 2018, Xu et al.!"® used STFT to obtain
the time-frequency characteristics of intrusion signals, con-
verted different types of vibration signals into spectrograms,
and realized the identification and classification of four types
of intrusion events. Zhao et al.""”! proposed a new method based
on the Markov transition field (MTF) and deep learning to clas-
sify vibration events and measure vibration frequencies. In addi-
tion, some other methods, such as wavelet decomposition?”),
wavelet energy spectrum analysis?!), and empirical mode
decomposition'*?! have also been used to extract time-frequency
domain features for pattern recognition.

In addition, researchers pay attention not only to time-
frequency features but also to temporal-spatial features of
signals. Wang et al.'**! proposed a method based on the deep
dual-path network and a time spectrum for ¢-OTDR event rec-
ognition by establishing the time spectrum of the disturbance
signal to attain the temporal-spatial features and achieved
94.3% accuracy with seven types of disturbances. In 2021, Shi
et al.'**) proposed a deep-learning-based multiradial distance
event classification method. The method can distinguish both
event types and radial distances by extracting the spatiotemporal
data matrix. The aforementioned works only focus on the time-
frequency features or the space-time features. The two types of
features have not been considered together for comparative
experiments.
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Fig. 1. Experimental setup of ¢-OTDR. (a) Knocking with a hammer; (b) wind
blowing. AOM, acoustic-optic modulator; EDFA, erbium-doped fiber amplifier;
LO, local oscillator; BPD, balanced photodetector; DAQ, data acquisition card.

In this paper, the image processing and STFT technology are
used to extract disturbance information in the time domain, the
frequency domain, and the space domain. We use a CNN to
train and classify the data. The experiment results show that
the temporal-spatial image can achieve 99.56% classification
accuracy on three kinds of events with 3600 sample data sets,
whereas the time-frequency image achieves 98.23%. Since the
extraction of temporal-spatial features does not require accurate
location, the signals can be directly converted into images, and
CNN can directly extract temporal-spatial features. However,
when extracting time-frequency features through STFT, it is
necessary to identify the exact location of the vibration event,
leading to some errors in the positioning process. In this study,
the results of pattern recognition of temporal-spatial and time-
frequency features are compared and analyzed from several
aspects, which provides reference value for the feature extraction
method in ¢-OTDR pattern recognition.

The rest of this paper is structured as follows. Section 2 intro-
duces the process of data acquisition and processing, including
experimental settings, data processing methods, data set compo-
sition, and pattern recognition methods. In Section 3, two meth-
ods of pattern recognition are compared and analyzed by
experiments. Thus, it is proved that the classification effect of
temporal-spatial images is better than that of time-frequency
images. Finally, Section 4 summarizes the paper.
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2. Data Acquisition and Processing

2.1. Experimental setup

The setup of the involved ¢-OTDR system is shown in Fig. 1.
Figure 2(a) shows the developed prototype ¢-OTDR instru-
ment, and Fig. 2(b) shows the deployed fiber in experiment. An
ultranarrow linewidth laser is used as the light source. The out-
put light of the laser is divided into two beams by a 99:1 coupler.
The 99% light serves as the probe light, and the 1% section is the
local oscillator light. The probe light is modulated into pulsed
light by an acoustic-optic modulator (AOM), amplified by an
erbium-doped fiber amplifier (EDFA). Then the probe pulse
light is injected into the sensing fiber through the circulator.
Then, the Rayleigh backscattered signal and local oscillator light
are mixed in a 50:50 coupler and converted into an electrical sig-
nal by a balanced photodetector (BPD). The electrical signal is
received by the data acquisition card (DAQ). Corresponding
digital signal processing (DSP) is performed on the collected
digital signals to obtain information, including the location of
the disturbance and the frequency of the disturbance signal,
which is shown in Fig. 2. The probe pulse width is set as 100 ns,
and the repetition period is 2 ps. The frequency shift of the AOM
is 80 MHz, and the DAQ sampling rate is 200 MS/s. The spatial
resolution of the ¢-OTDR system is 10 m.

2.2. Data set processing

When the vibration signal is applied to the fiber, the phase of the
Rayleigh backscattering (RBS) signal in the disturbed region is
modulated accordingly. The RBS signal after the disturbance
can be expressed as

Icom(t) = EsELO COS(A(p) +jEsELO Sin(A¢)’ (1)

where E E;ois the intensity of the RBS signal, and Ag is the
phase of the RBS signal. I, (¢) is converted into a trace matrix.
The received RBS signal can be converted to the data matrix, as
shown in Fig. 3. The first dimension of the matrix is named “fast
time,” which represents the distance along the fiber. The second
dimension of the trace matrix, which is termed “slow time,” is
the time axis of the RBS signal at each location of the fiber**).
The angle function is used to extract the phase of the trace matrix

Fig. 2. (a) Developed prototype @-OTDR instrument; (b) deployed fiber in the experiment.
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Fig. 3. Flow chart of DSP.

signal, as shown in the following:
Ag = angle(E,E; 5¢/2?). 2)

Then STFT is performed on the obtained disturbed signal to
obtain the time-frequency diagram!'®!. The basic calculation is

S(z.f) = /_ " i(2)g(z — ) exp(=j2af2)dz, 3)

where i(z) is the disturbance signal; g(z — 7) is the time window
centered on 7; and exp(—j27zfz) is a modulation operator that
converts the signal from the time domain to the frequency
domain.

After selecting the STFT window function, the resolution is
fixed when the window length function is determined. Since
the time resolution is inversely proportional to the frequency
resolution, they cannot be optimized simultaneously. Therefore,
choosing the appropriate window function type and reasonable
window length is vital. Here we use the Hanning window func-
tion to intercept the signal to guarantee fine-frequency resolu-
tion and less spectrum leakage. Its expression can be written as

w(n) =%{1 - os[w

:|}, 0<n<N-1, (4

where N is the length of the window. To obtain frequency res-
olution and facilitate calculation, the window length is set
to 8192.

2.3. Data set preparation

The data set greatly influences the recognition performance, and
a reasonable data set structure is crucial for pattern recognition.
Common vibration signals include mechanical activity, walking,
wind blowing, rain, knocking, shaking, etc. In this paper, three
typical event types, i.e., background noise, knocking, and wind

blowing, are selected. The knock signal is obtained by striking
with a hammer. A fan generates the wind blowing signal to sim-
ulate the natural wind blowing in the virtual environment.
Background noise is obtained when the ambient environment
is relatively quiet without any vibration event. The composition
of the data set is shown in Table 1. The time-domain waveforms
of different vibration events are presented in Fig. 4.

We have selected a range of 10 m in the spatial neighborhood
of the vibration signal. Each temporal-spatial image represents a
spatial length of 10 m and a temporal length of 1 s, shown in
Figs. 5(a)-5(c), where the unit on the color bars is the radian
(the unit of phase). The vertical and horizontal direction of
the temporal-spatial image represents position and time, respec-
tively. The time duration of time-frequency images is 1 s, which
is shown in Figs. 5(d)-5(f). For the time-frequency image, the
horizontal axis presents time too, whereas the vertical axis
presents frequency. The unit of the color bars in Figs. 5(d)-5(f)
is the decibel, where 0 dB refers to the maximum value of the
whole spectrum along the position.

Table 1. Composition of the Data Set.

Event Type Knocking Blowing Noise
Temporal-spatial training set 599 804 888
Temporal-spatial validation set 421 396 312
Total 1020 1200 1200
Time-frequency training set 845 804 641
Time-frequency validation set 355 396 379
Total 1200 1200 1020

040601-3



Vol. 21, No. 4 | April 2023

200

—
=1
=]

Phase(rad)
(=]

SR
S o
S 3

Chinese Optics Letters

200 1

100

0

-100

-200

0.5 1 0 0.5 1 0
Time(s)
(a) (b)

0.5 1

(©)

Fig. & Time-domain waveform of vibration signal. (a) Knock around the fiber with a hammer; [b) wind blowing; (c) background noise.
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Fig. 5. Temporal-spatial image and time-frequency image for vibration events. (a), (d) Knock around the fiber with a hammer; (b), (e) wind blowing; (c), (f) back-

ground noise.
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Fig. 6. Network structure of ResNet50.

2.4. Pattern recognition method

Deep-learning methods such as CNN can automatically learn
the features of data sets. ResNet50 has a deep network level
and few parameters, achieving good results in image data sets
in other fields. Consequently, it is applied to ¢-OTDR event
classification. ResNet50 increases the network depth by stacking
the remaining blocks to solve the network degradation problem
and the vanishing gradient problem~?*. Here we adopt
ResNet50 network as the recognition classifier, as shown in
Fig. 6. ResNet50 contains 50 conv2d operations, which are di-
vided into five stages. The first convolution layer has 64 kernels.
The size and maximum pooled stride of each kernel are 7 X 7
and 2, respectively. The last four stages have 9, 12, 18, and 9

Weight layer

F(x) RelLU
Weight layer

F(x)+x + oLl

X
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Fig. 7. Residual blocks of ResNet50.
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convolution layers, also known as residual blocks, as shown
in Fig. 7. x is the input to the residual block. F(x) is the output
after linear change and activation. The figure shows that in the
residual network, F(x) adds the input value x of this layer before
activation after the linear change of the second layer, and then
carries out the output after activation. X is added before the sec-
ond layer output value is activated. This path is called a shortcut
connection. The residual block is used to deepen the network.
With the increase of the network, the global feature vector of
the feature image is extracted (2048, 7, 7). The average pooling
layer converts it into an eigenvector. After passing through the
dropout layer, the 2048-dimensional feature vector is connected
to the full connection layer. Finally, the classifier calculates the
feature vector and outputs the category probability. For training,
the model performs L2 regularization optimization on epochs.
In addition, we trained the model using feature images to verify
the effect of time and space on classification accuracy. The cat-
egorical cross-entropy loss uses the Adam optimizer and the
ReLU activation function to speed up the computation. The
model input is a 1 X 3 X224 X 224 feature vector, and then
the data are processed through two-dimensional convolution,
max pooling, and fully connected layers.

3. Experimental Results and Analysis

Here, the ResNet50 classifier is used to train and validate the
temporal-spatial and time-frequency images, respectively, and
the cross-validation method is used to evaluate the classification
results. The learning rate is set as 0.003. In deep learning, the
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principle of small-batch data processing is generally adopted.
The batch size is 25, and the training epoch is 100. We collected
1200 sets of three signals: knock around the fiber with a hammer,
the wind blowing optical fiber, and background noise. The ratio
of the training set and validation set is 7:3. The loss and accuracy
are obtained with each iteration, and the hyperparameters are
changed to optimize the next training. Each network is tested
in the test phase every 100 iterations. The resultant training loss
and validation accuracy curves are shown in Fig. 8.

During the training on time-frequency images, the training
loss, representing the network error, decreases slowly after 50
epochs until it hovers around 0.03, and the best test accuracy
is 98%. In contrast, the test accuracy of the temporal-spatial
image is 99%, and the training loss reaches 0.01 after 30 epochs.
The results show that the classification performance based on
the temporal-spatial images is better. The classification results
are shown in Table 2, which shows that classification accuracy
based on the temporal-spatial images achieves 99.49%, whereas
the classification accuracy based on time-frequency images is
98.23%. The accuracy of temporal-spatial images is 1.33% higher
than that of the time-frequency images. From the average train-
ing time per step, the temporal-spatial map as input is improved
by 3 s compared to the time-frequency map as input. However,
from Table 3 it is clear that the recall and f1-score of the input
time-frequency image reach 100%, indicating that the model has
a better recognition effect on the time-frequency characteristics
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Fig. 8. (a) Classification accuracy curve and (b) loss curve of training.
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Table 2. Comparison of Training Results between Temporal-Spatial and Time-
Frequency Images.

Precision Average
Training

Knocking Noise Blowing Accuracy Time/s

Temporal-spatial 9964% 9898% 99.98%  99.49% 219
image
Time-frequency 9551%  99.18% 98.19%  98.23% 216
image
Table 3. Comparison of Recall and f1-Score.
Event Type Recall f1-Score
Temporal-spatial Knocking 99.76% 99.76%
Noise 99.36% 99.52%
Blowing 99.75% 99.62%
Time-frequency Knocking 99.15% 97.50%
Noise 96.04% 97.59%
Blowing 100% 100%

of continuous signals. The confusion matrices are shown in
Fig. 9. The knocking signal is most easily confused compared
with the other two types of signals, primarily based on time-
frequency characteristics. A possible explanation is that the
knock signal is a single point tapping signal that is transient
in the time domain. There is a time difference between the
two disturbance signals. The signal feature image will contain
the interference information of the external environment.

The experimental results show that the classification effect
based on the temporal-spatial image is better than that of the
time-frequency image. In preprocessing the two signals, the
extraction of the temporal-spatial feature does not require pre-
cise positioning in advance. Taking the distance within the range
of 20 m around the perturbation position, we have converted the
signal of this distance into a temporal-spatial image. The tem-
poral and spatial correlation of the signal is preserved, and
the intensity information is extracted from the image. The tem-
poral-spatial features are directly extracted by the CNN model,
which avoids manual processing during the classification,
thereby reducing the workload and retaining the features of
the original signal. However, the time-frequency feature
extracted by STFT must locate the disturbance signal. The
time-frequency features extracted by STFT need to locate the
disturbance signals and extract the signal features. In practical
applications, most of the collected signals are discontinuous sig-
nals. Due to external disturbance, it is difficult to accurately
extract target disturbance information, and there may be some
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information loss. Therefore, the extraction of time-frequency
feature information is greatly affected by the environment,
resulting in a slightly worse classification effect.

4. Conclusion

This paper compares and analyzes the disturbance events clas-
sification methods in ¢-OTDR using different features of CNN,
namely, temporal-spatial features and time-frequency features.
Through the experiments on a 3600-sample data set, temporal-
spatial and time-frequency images are directly used as the input
of the ResNet50. The temporal-spatial images based classifica-
tion accuracy achieves 99.49%, and the classification accuracy
of time-frequency images is 98.23%. Training accuracy, valid
accuracy, average training time, loss curve, and confusion matrix
are used as evaluation criteria. Due to the disturbance of the
external environment, the space range of time-frequency feature
extraction is short, and there is interference in feature extraction
for the transient signals, such as knocking. The temporal-spatial
image of the signal has good space-time correlation, and the

Vol. 21, No. 4 | April 2023

extracted features contain complete information. Therefore,
the classification effect of temporal-spatial images is better than
that of time-frequency images. The recognition results of the two
feature images provide meaningful reference for the further
study of pattern recognition in ¢-OTDR.
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