• Acta Optica Sinica
  • Vol. 41, Issue 12, 1220001 (2021)
Xuanrui Gong, Zhuang Sun, Yaowen Lü*, and Xiping Xu**
Author Affiliations
  • Key Laboratory of Opto-Electronic Measurement and Optical Information Transmission Technology of Ministry of Education, School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130033, China
  • show less
    DOI: 10.3788/AOS202141.1220001 Cite this Article Set citation alerts
    Xuanrui Gong, Zhuang Sun, Yaowen Lü, Xiping Xu. Non-iterative Discrete Gradient Integration Method Based on Two-Dimensional Taylor Theory[J]. Acta Optica Sinica, 2021, 41(12): 1220001 Copy Citation Text show less
    References

    [1] Ji Z Y, Zhang X F, Zheng Z L et al. Algorithm based on the optimal block zonal strategy for fast wavefront reconstruction[J]. Applied Optics, 59, 1383-1396(2020). http://www.researchgate.net/publication/338382068_An_algorithm_based_on_the_optimal_block_zonal_strategy_for_fast_wavefront_reconstruction

    [2] Viegers M, Brunner E, Soloviev O et al. Nonlinear spline wavefront reconstruction through moment-based Shack-Hartmann sensor measurements[J]. Optics Express, 25, 11514-11529(2017). http://europepmc.org/abstract/MED/28788716

    [3] Pant K K, Burada D R, Bichra M et al. Weighted spline based integration for reconstruction of freeform wavefront[J]. Applied Optics, 57, 1100-1109(2018). http://www.ncbi.nlm.nih.gov/pubmed/29469893

    [4] Wei P, Li X Y, Luo X et al. Influence of lack of light in partial subapertures on wavefront reconstruction for Shack-Hartmann wavefront sensor[J]. Chinese Journal of Lasers, 47, 0409002(2020).

    [5] Liang P, Ding J, Jin Z et al. Two-dimensional wave-front reconstruction from lateral shearing interferograms[J]. Optics Express, 14, 625-634(2006).

    [6] Guo Y F, Xia J P, Ding J P. Recovery of wavefront from multi-shear interferograms with different tilts[J]. Optics Express, 22, 11407-11416(2014). http://europepmc.org/abstract/med/24921262

    [7] Frankot R T, Chellappa R. A method for enforcing integrability in shape from shading algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 439-451(1988). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020411641903.html

    [8] Zeng W, Wang H Y, Liu Y Q et al. 3D reconstruction of space target IR image based on IR-SFS algorithm[J]. Chinese Optics, 7, 376-388(2014).

    [9] Ferraton M, Stolz C, Mériaudeau F. Optimization of a polarization imaging system for 3D measurements of transparent objects[J]. Optics Express, 17, 21077-21082(2009). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-23-21077

    [10] Garcia N M, de Erausquin I, Edmiston C et al. Surface normal reconstruction using circularly polarized light[J]. Optics Express, 23, 14391-14406(2015). http://www.ncbi.nlm.nih.gov/pubmed/26072802

    [11] Huang L, Ng C S, Asundi A K. Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry[J]. Optics Express, 19, 12809-12814(2011). http://www.ncbi.nlm.nih.gov/pubmed/21716523

    [12] Xiao Y L, Su X Y, Chen W J et al. Three-dimensional shape measurement of aspheric mirrors with fringe reflection photogrammetry[J]. Applied Optics, 51, 457-464(2012). http://www.ncbi.nlm.nih.gov/pubmed/22307115

    [13] Zhang S K, Li L H, Sun J N et al. Surface measurement of angel lobster eye X-ray lens based on fringe reflection[J]. Acta Optica Sinica, 39, 0934001(2019).

    [14] Tang H C, Li D H, Li L et al. Planar object surface shape speckle pattern deflectometry based on digital image correlation[J]. Acta Optica Sinica, 39, 0212006(2019).

    [15] Freischlad K R, Koliopoulos C L. Modal estimation of a wave front from difference measurements using the discrete Fourier transform[J]. Journal of the Optical Society of America A, 3, 1852-1861(1986). http://www.opticsinfobase.org/josaa/abstract.cfm?uri=josaa-3-11-1852

    [16] Mochi I, Goldberg K A. Modal wavefront reconstruction from its gradient[J]. Applied Optics, 54, 3780-3785(2015). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-54-12-3780

    [17] Tong K N, Zheng Y, Zhang Z et al. Model of radial basis functions based on surface slope for optical freeform surfaces[J]. Optics Express, 26, 14010-14023(2018). http://europepmc.org/abstract/MED/29877445

    [18] Fried D L. Least-square fitting a wave-front distortion estimate to an array of phase-difference measurements[J]. Journal of the Optical Society of America A, 67, 370-375(1977). http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-67-3-370

    [19] Hudgin R H. Optimal wave-front estimation[J]. Journal of the Optical Society of America A, 67, 378-382(1977).

    [20] Southwell W H. Wave-front estimation from wave-front slope measurements[J]. Journal of the Optical Society of America A, 70, 998-1006(1980). http://www.opticsinfobase.org/abstract.cfm?URI=josa-70-8-998

    [21] Huang L, Asundi A. Improvement of least-squares integration method with iterative compensations in fringe reflectometry[J]. Applied Optics, 51, 7459-7465(2012). http://www.ncbi.nlm.nih.gov/pubmed/23128691

    [22] Li G H, Li Y Q, Liu K et al. Improving wavefront reconstruction accuracy by using integration equations with higher-order truncation errors in the Southwell geometry[J]. Journal of the Optical Society of America A, 30, 1448-1459(2013). http://europepmc.org/abstract/med/24323162

    [23] Ren H Y, Gao F, Jiang X Q. Least-squares method for data reconstruction from gradient data in deflectometry[J]. Applied Optics, 55, 6052-6059(2016). http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=261344

    [24] Huang L, Xue J P, Gao B et al. Zonal wavefront reconstruction in quadrilateral geometry for phase measuring deflectometry[J]. Applied Optics, 56, 5139-5144(2017). http://europepmc.org/abstract/MED/29047564

    [25] Zou W Y, Rolland J P. Iterative zonal wave-front estimation algorithm for optical testing with general-shaped pupils[J]. Journal of the Optical Society of America A, 22, 938-951(2005). http://www.ncbi.nlm.nih.gov/pubmed/15898554

    [26] Roddier F, Roddier C. Wavefront reconstruction using iterative Fourier transforms[J]. Applied Optics, 30, 1325-1327(1991). http://www.ncbi.nlm.nih.gov/pubmed/20700283

    [27] Bond C Z, Correia C M, Sauvage J F et al. Iterative wave-front reconstruction in the Fourier domain[J]. Optics Express, 25, 11452-11465(2017). http://www.ncbi.nlm.nih.gov/pubmed/28788711

    Xuanrui Gong, Zhuang Sun, Yaowen Lü, Xiping Xu. Non-iterative Discrete Gradient Integration Method Based on Two-Dimensional Taylor Theory[J]. Acta Optica Sinica, 2021, 41(12): 1220001
    Download Citation