• Acta Optica Sinica
  • Vol. 41, Issue 1, 0119001 (2021)
Xianfeng Chen1、2、3、4、*, Yuanlin Zheng1、2, Haigang Liu1, Shijie Liu1, Yuanhua Li1、5, and Xiaohui Zhao1、6
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China
  • 4Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan, Shandong 250358, China
  • 5Department of Physics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
  • 6Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201899, China
  • show less
    DOI: 10.3788/AOS202141.0119001 Cite this Article Set citation alerts
    Xianfeng Chen, Yuanlin Zheng, Haigang Liu, Shijie Liu, Yuanhua Li, Xiaohui Zhao. New Principle, Platform, and Application of Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2021, 41(1): 0119001 Copy Citation Text show less
    References

    [1] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118(1961).

    [2] Fejer M M. Nonlinear optical frequency conversion[J]. Physics Today, 47, 25-32(1994).

    [3] Bloembergen N. Nonlinear optics[M]. New York: W.A. Benjamin(1965).

    [4] Shen Y R. The principle of nonlinear optics[M]. New York: John Wiley and Sons(1984).

    [5] Fiore A, Berger V, Rosencher E et al. Phase matching using an isotropic nonlinear optical material[J]. Nature, 391, 463-466(1998). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=178136&site=ehost-live

    [6] Zhang W G, Yu H W, Wu H P et al. Phase-matching in nonlinear optical compounds: a materials perspective[J]. Chemistry of Materials, 29, 2655-2668(2017).

    [7] Hum D S, Fejer M M. Quasi-phase matching[J]. Comptes Rendus Physique, 8, 180-198(2007).

    [8] Cui Z J, Liu D A, Miao J et al. Phase matching using the linear electro-optic effect[J]. Physical Review Letters, 118, 043901(2017). http://www.ncbi.nlm.nih.gov/pubmed/28186820

    [9] Hinakura Y, Terada Y, Arai H et al. Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes[J]. Optics Express, 26, 11538-11545(2018). http://www.researchgate.net/publication/324614141_Electro-optic_phase_matching_in_a_Si_photonic_crystal_slow_light_modulator_using_meander-line_electrodes

    [10] Kewitsch A S, Segev M, Yariv A et al. Tunable quasi-phase matching using dynamic ferroelectric domain gratings induced by photorefractive space-charge fields[J]. Applied Physics Letters, 64, 3068-3070(1994). http://scitation.aip.org/content/aip/journal/apl/64/23/10.1063/1.111349

    [11] Baudrier-Raybaut M, Haïdar R, Kupecek P et al. Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials[J]. Nature, 432, 374-376(2004).

    [12] Zhang J, Fritsch K, Wang Q et al. Intra-pulse difference-frequency generation of mid-infrared (2.7--20 μm) by random quasi-phase-matching[J]. Optics Letters, 44, 2986-2989(2019). http://www.ncbi.nlm.nih.gov/pubmed/31199362

    [13] Steinlechner F, Hermosa N, Pruneri V et al. Frequency conversion of structured light[J]. Scientific reports, 6, 21390(2016). http://www.nature.com/articles/srep21390

    [14] Liu H G, Chen X F. The manipulation of second-order nonlinear harmonic wave by structured material and structured light[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850047(2018). http://www.worldscientific.com/doi/abs/10.1142/S0218863518500479

    [15] Ma X F, Zeng P, Zhou H Y. Erratum: phase-matching quantum key distribution[J]. Physical Review X, 9, 029901(2019).

    [16] Ramelow S, Fedrizzi A, Poppe A et al. Polarization-entanglement-conserving frequency conversion of photons[J]. Physical Review A, 85, 013845(2012). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000012000002000082000001&idtype=cvips&gifs=Yes

    [17] Chang L, Boes A, Guo X W et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion[J]. Laser & Photonics Reviews, 12, 1800149(2018).

    [18] Mohamed M S, Simbula A, Carlin J F et al. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon[J]. APL Photonics, 2, 031301(2017). http://arxiv.org/abs/1609.07917

    [19] Leshem A, Shiloh R, Arie A. Experimental realization of spectral shaping using nonlinear optical holograms[J]. Optics Letters, 39, 5370-5373(2014). http://www.ncbi.nlm.nih.gov/pubmed/26466274

    [20] Shapira A, Juwiler I, Arie A. Tunable nonlinear beam shaping by non-collinear interactions[J]. Laser & Photonics Reviews, 7, L25-L29(2013). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201300026

    [21] Singh D, Shiloh R, Arie A. Shaping the fundamental and second harmonic beams using patterned facets in lithium triborate[J]. Optical Materials Express, 8, 2654-2661(2018). http://8.18.37.105/ome/abstract.cfm?uri=ome-8-9-2654

    [22] Lin J T, Fang B, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 116, 101104(2020). http://www.researchgate.net/publication/344146505_Advances_in_on-chip_photonic_devices_based_on_lithium_niobate_on_insulator

    [23] Raymer M G, Srinivasan K. Manipulating the color and shape of single photons[J]. Physics Today, 65, 32-37(2012).

    [24] Shahriar M S, Kumar P, Hemmer P R. Connecting processing-capable quantum memories over telecommunication links via quantum frequency conversion[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, 124018(2012). http://www.onacademic.com/detail/journal_1000037842853810_d71a.html

    [25] Wang W J, Sheng Y, Roppo V et al. Enhancement of nonlinear Raman-Nath diffraction in two-dimensional optical superlattice[J]. Optics Express, 21, 18671-18679(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-16-18671

    [26] Kalinowski K, Roedig P, Sheng Y et al. Enhanced erenkov second-harmonic emission in nonlinear photonic structures[J]. Optics Letters, 37, 1832-1834(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-11-1832

    [27] Vyunishev A M, Aleksandrovsky A S, Zaitsev A I et al. erenkov nonlinear diffraction in random nonlinear photonic crystal of strontium tetraborate[J]. Applied Physics Letters, 101, 211114(2012). http://scitation.aip.org/content/aip/journal/apl/101/21/10.1063/1.4767385/cite/bibtex;jsessionid=13tj8slsooq8t.x-aip-live-06

    [28] Zhang Y, Gao Z D, Qi Z et al. Nonlinear erenkov radiation in nonlinear photonic crystal waveguides[J]. Physical Review Letters, 100, 163904(2008).

    [29] Saltiel S M, Sheng Y, Voloch-Bloch N et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures[J]. IEEE Journal of Quantum Electronics, 45, 1465-1472(2009). http://ieeexplore.ieee.org/document/5308682/

    [30] Sheng Y, Roppo V, Kong Q et al. Tailoring Cerenkov second-harmonic generation in bulk nonlinear photonic crystal[J]. Optics Letters, 36, 2593-2595(2011).

    [31] Saltiel S M, Neshev D N, Krolikowski W et al. Nonlinear diffraction from a virtual beam[J]. Physical Review Letters, 104, 083902(2010). http://europepmc.org/abstract/MED/20366931

    [32] Sheng Y, Wang W J, Shiloh R et al. erenkov third-harmonic generation in χ(2) nonlinear photonic crystal[J]. Applied Physics Letters, 98, 241114(2011).

    [33] An N, Ren H J, Zheng Y L et al. Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal[J]. Applied Physics Letters, 100, 221103(2012). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4722931

    [34] Ayoub M, Roedig P, Imbrock J et al. Cascaded erenkov third-harmonic generation in random quadratic media[J]. Applied Physics Letters, 99, 241109(2011). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6105534

    [35] Fragemann A, Pasiskevicius V, Laurell F. Second-order nonlinearities in the domain walls of periodically poled KTiOPO4[J]. Applied Physics Letters, 85, 375-377(2004). http://www.onacademic.com/detail/journal_1000037162403910_a51e.html

    [36] Seidel J, Martin L W, He Q et al. Conduction at domain walls in oxide multiferroics[J]. Nature Materials, 8, 229-234(2009). http://www.nature.com/nmat/journal/v8/n3/full/nmat2373.html

    [37] Yang S Y, Seidel J, Byrnes S J et al. Above-bandgap voltages from ferroelectric photovoltaic devices[J]. Nature Nanotechnology, 5, 143-147(2010).

    [38] Deng X W, Ren H J, Lao H Y et al. Research on Cherenkov second-harmonic generation in periodically poled lithium niobate by femtosecond pulses[J]. Journal of the Optical Society of America B, 27, 1475-1480(2010).

    [39] Deng X W, Chen X F. Domain wall characterization in ferroelectrics by using localized nonlinearities[J]. Optics Express, 18, 15597-15602(2010).

    [40] Ren H J, Deng X W, Zheng Y L et al. Single domain wall effect on parametric processes via Cherenkov-type phase matching[J]. Journal of Nonlinear Optical Physics & Materials, 20, 459-466(2011). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=71669725&site=ehost-live

    [41] Ren H J, Deng X W, Zheng Y L et al. Nonlinear Cherenkov radiation in an anomalous dispersive medium[J]. Physical Review Letters, 108, 223901(2012). http://www.ncbi.nlm.nih.gov/pubmed/23003594

    [42] Ren H J, Deng X W, Zheng Y L et al. Enhanced nonlinear Cherenkov radiation on the crystal boundary[J]. Optics Letters, 38, 1993-1995(2013).

    [43] Ren H, Deng X, Zheng Y et al. Surface phase-matched harmonic enhancement in a bulk anomalous dispersion medium[J]. Applied Physics Letters, 103, 021110(2013). http://scitation.aip.org/content/aip/journal/apl/103/2/10.1063/1.4813624

    [44] Zhao X H, Zheng Y L, Ren H J et al. Nonlinear Snell law for grazing incidence along interfaces with discontinuous second-order susceptibilities[J]. Physical Review A, 95, 043841(2017).

    [45] Zhao X, Zheng Y, Ren H et al. Nonlinear Cherenkov radiation at the interface of two different nonlinear media[J]. Optics Express, 24, 12825-12830(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410301

    [46] Suganuma T, Kubo H, Wakabayashi O et al. 157-nm coherent light source as an inspection tool for F(2) laser lithography[J]. Optics Letters, 27, 46-48(2002).

    [47] Togashi T, Kanai T, Sekikawa T et al. Generation of vacuum-ultraviolet light by an optically contacted, prism-coupled KBe2BO3F2 crystal[J]. Optics Letters, 28, 254-256(2003).

    [48] Kiss T, Kanetaka F, Yokoya T et al. Photoemission spectroscopic evidence of gap anisotropy in an f-electron superconductor[J]. Physical Review Letters, 94, 057001(2005).

    [49] Kiss T, Shimojima T, Ishizaka K et al. A versatile system for ultrahigh resolution, low temperature, and polarization dependent laser-angle-resolved photoemission spectroscopy[J]. The Review of Scientific Instruments, 79, 023106(2008). http://scitation.aip.org/content/aip/journal/rsi/79/2/10.1063/1.2839010

    [50] Okazaki K, Ota Y, Kotani Y et al. Octet-line node structure of superconducting order parameter in KFe2As2[J]. Science, 337, 1314-1317(2012).

    [51] Pudavar H E, Joshi M P, Prasad P N et al. High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout[J]. Applied Physics Letters, 74, 1338-1340(1999). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4901541

    [52] Chen C, Wang Y, Xia Y et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. Journal of Applied Physics, 77, 2268-2272(1995). http://www.opticsinfobase.org/as/abstract.cfm?uri=QELS-1995-QWA7

    [53] Kanai T, Kanda T, Sekikawa T et al. Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti: sapphire laser[J]. Journal of the Optical Society of America B, 21, 370-375(2004).

    [54] Chen C T. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal[J]. Optical Materials, 26, 425-429(2004). http://www.sciencedirect.com/science/article/pii/S0925346704000813

    [55] Nakazato T, Ito I, Kobayashi Y et al. Phase-matched frequency conversion below 150 nm in KBe2BO3F2[J]. Optics Express, 24, 17149-17158(2016). http://dx.doi.org/10.1364/oe.24.017149

    [56] Shimamura K, Víllora E G. Growth and characteristics of optical single crystals for UV/VUV applications[J]. Journal of Fluorine Chemistry, 132, 1040-1046(2011). http://www.sciencedirect.com/science/article/pii/S0022113911002466

    [57] Kannan C V, Shimamura K, Zeng H R et al. Ferroelectric and anisotropic electrical properties of BaMgF4 single crystal for vacuum UV devices[J]. Journal of Applied Physics, 104, 114113(2008). http://www.researchgate.net/publication/224444909_Ferroelectric_and_anisotropic_electrical_properties_of_BaMgF4_single_crystal_for_vacuum_UV_devices

    [58] Shimamura K, Víllora E G, Muramatsu K et al. Advantageous growth characteristics and properties of SrAlF5 compared with BaMgF4 for UV/VUV nonlinear optical applications[J]. Journal of Crystal Growth, 275, 128-134(2005). http://www.sciencedirect.com/science/article/pii/S0022024804014101

    [59] Nomura Y, Ito Y, Ozawa A et al. Coherent quasi-cw 153 nm light source at 33 MHz repetition rate[J]. Optics Letters, 36, 1758-1760(2011).

    [60] Mateos L, Ramírez M O, Carrasco I et al. BaMgF4: an ultra-transparent two-dimensional nonlinear photonic crystal with strong χ(3) response in the UV spectral region[J]. Advanced Functional Materials, 24, 1509-1518(2014). http://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201302588

    [61] Buchter S C, Fan T Y, Liberman V et al. Periodically poled BaMgF(4) for ultraviolet frequency generation[J]. Optics Letters, 26, 1693-1695(2001).

    [62] Zhao X, Zheng Y, An N et al. Enhancement of UV second-harmonic radiation at nonlinear interfaces with discontinuous second-order susceptibilities[J]. Scientific Reports, 8, 6695(2018). http://europepmc.org/abstract/MED/29703957

    [63] Zhao X, Zheng Y, An N et al. Surface enhanced nonlinear Cherenkov radiation in one-dimensional nonlinear photonic crystal[J]. Optics Express, 25, 13897-13902(2017).

    [64] Allen L, Beijersbergen M W. Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).

    [65] Yao A M, Padgett M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 3, 161-204(2011).

    [66] Mirhosseini M. Magaña-Loaiza O S, Chen C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 21, 30196-30203(2013).

    [67] He J, Wang X, Hu D et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 21, 20230-20239(2013).

    [68] Apurv Chaitanya N, Chaitanya Kumar S, Devi K et al. Ultrafast optical vortex beam generation in the ultraviolet[J]. Optics Letters, 41, 2715-2718(2016). http://www.onacademic.com/detail/journal_1000038969541610_485f.html

    [69] Cai X L, Wang J W, Strain M J et al. Integrated compact optical vortex beam emitters[J]. Science, 338, 363-366(2012).

    [70] Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 25, 225-230(2008).

    [71] Berry M V, Balazs N L. Nonspreading wave packets[J]. American Journal of Physics, 47, 264-267(1979).

    [72] Siviloglou G A, Broky J, Dogariu A et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 99, 213901(2007).

    [73] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Optics Letters, 32, 979-981(2007).

    [74] Broky J, Siviloglou G A, Dogariu A et al. Self-healing properties of optical Airy beams[J]. Optics Express, 16, 12880-12891(2008).

    [75] Polynkin P, Kolesik M, Moloney J V et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 324, 229-232(2009).

    [76] Siviloglou G A, Broky J, Dogariu A et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 33, 207-209(2008).

    [77] Zhang P, Prakash J, Zhang Z et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Optics Letters, 36, 2883-2885(2011).

    [78] Hall D G. Vector-beam solutions of Maxwell's wave equation[J]. Optics Letters, 21, 9-11(1996).

    [79] Chen H, Hao J, Zhang B F et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Optics Letters, 36, 3179-3181(2011).

    [80] Wang X L, Ding J, Ni W J et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement[J]. Optics Letters, 32, 3549-3551(2007).

    [81] Chen S, Zhou X, Liu Y et al. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere[J]. Optics Letters, 39, 5274-5276(2014). http://arxiv.org/abs/1407.5437v1

    [82] Lee W M, Yuan X C, Cheong W C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation[J]. Optics Letters, 29, 1796-1798(2004).

    [83] Arlt J, Garces-Chavez V, Sibbett W et al. Optical micromanipulation using a Bessel light beam[J]. Optics Communications, 197, 239-245(2001). http://www.sciencedirect.com/science/article/pii/S0030401801014791

    [84] Zhong M C, Gong L, Li D et al. Optical trapping of core-shell magnetic microparticles by cylindrical vector beams[J]. Applied Physics Letters, 105, 181112(2014). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6949553

    [85] Zhang L, Qiu X, Zeng L et al. Multiple trapping using a focused hybrid vector beam[J]. Chinese Physics B, 28, 094202(2019).

    [86] Huang L, Guo H, Li J et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Optics Letters, 37, 1694-1696(2012).

    [87] Rui G H, Zhan Q W. Trapping of resonant metallic nanoparticles with engineered vectorial optical field[J]. Nanophotonics, 3, 351-361(2014).

    [88] Anoop K K, Rubano A, Fittipaldi R et al. Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate[J]. Applied Physics Letters, 104, 241604(2014). http://scitation.aip.org/content/aip/journal/apl/104/24/10.1063/1.4884116

    [89] Duocastella M, Arnold C B. Bessel and annular beams for materials processing[J]. Laser & Photonics Reviews, 6, 607-621(2012). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201100031

    [90] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 86, 329-334(2007). http://link.springer.com/article/10.1007/s00339-006-3784-9

    [91] Vaziri A, Pan J W, Jennewein T et al. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum[J]. Physical Review Letters, 91, 227902(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000003000012000025000001&idtype=cvips&gifs=Yes

    [92] Leach J, Jack B, Romero J et al. Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces[J]. Optics Express, 17, 8287-8293(2009).

    [93] Fickler R, Lapkiewicz R, Plick W N et al. Quantum entanglement of high angular momenta[J]. Science, 338, 640-643(2012). http://europepmc.org/abstract/MED/23118185

    [94] Wang J, Yang J Y, Fazal I M et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 6, 488-496(2012).

    [95] Huang H, Ren Y, Xie G et al. Tunable orbital angular momentum mode filter based on optical geometric transformation[J]. Optics Letters, 39, 1689-1692(2014). http://www.ncbi.nlm.nih.gov/pubmed/24690870

    [96] Berkhout G C, Lavery M P, Courtial J et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010). http://europepmc.org/abstract/MED/21230900

    [97] Milione G. Lavery M P J, Huang H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer[J]. Optics Letters, 40, 1980-1983(2015).

    [98] Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 40, 4843-4846(2015).

    [99] Chu J, Li X, Smithwick Q et al. Coding/decoding two-dimensional images with orbital angular momentum of light[J]. Optics Letters, 41, 1490-1493(2016).

    [100] Sharma M K, Joseph J, Senthilkumaran P. Selective edge enhancement using anisotropic vortex filter[J]. Applied Optics, 50, 5279-5286(2011).

    [101] Ng J, Lin Z F, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 104, 103601(2010). http://europepmc.org/abstract/MED/20366423

    [102] Gahagan K T, Swartzlander G A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America B, 16, 533-537(1999).

    [103] Tao S, Yuan X C, Lin J et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 13, 7726-7731(2005).

    [104] Willner A E, Huang H, Yan Y et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 7, 66-106(2015).

    [105] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 40, 597-600(2015).

    [106] Chen Y, Fang Z X, Ren Y X et al. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device[J]. Applied Optics, 54, 8030-8035(2015).

    [107] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 38, 534-536(2013). http://europepmc.org/abstract/MED/23455127

    [108] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 177, 297-301(2000). http://www.sciencedirect.com/science/article/pii/S0030401800005721

    [109] Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 25, 1493-1495(2000).

    [110] Gutiérrez-Vega J C, Iturbe-Castillo M D, Ramırez G A et al. Experimental demonstration of optical Mathieu beams[J]. Optics Communications, 195, 35-40(2001). http://www.sciencedirect.com/science/article/pii/S0030401801013190

    [111] Zhou J, Liu Y, Ke Y et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 40, 3193-3196(2015).

    [112] Libster-Hershko A, Trajtenberg-Mills S, Arie A. Dynamic control of light beams in second harmonic generation[J]. Optics Letters, 40, 1944-1947(2015).

    [113] Li S M, Kong L J, Ren Z C et al. Managing orbital angular momentum in second-harmonic generation[J]. Physical Review A, 88, 035801(2013).

    [114] Chaitanya A, Aadhi A, Jabir M V et al. Frequency-doubling characteristics of high-power, ultrafast vortex beams[J]. Optics Letters, 40, 2614-2617(2015).

    [115] Dolev I, Kaminer I, Shapira A et al. Experimental observation of self-accelerating beams in quadratic nonlinear media[J]. Physical Review Letters, 108, 113903(2012). http://www.tandfonline.com/servlet/linkout?suffix=CIT0033&dbid=8&doi=10.1080%2F09500340.2014.887154&key=22540474

    [116] Li H, Liu H G, Chen X F. Nonlinear generation of Airy vortex beam[J]. Optics Express, 26, 21204-21209(2018). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-26-16-21204

    [117] Liu H, Li J, Zhao X et al. Nonlinear Raman-Nath second harmonic generation with structured fundamental wave[J]. Optics Express, 24, 15666-15671(2016).

    [118] Zhou H, Liu H, Sang M et al. Nonlinear Raman-Nath second harmonic generation of hybrid structured fundamental wave[J]. Optics Express, 25, 3774-3779(2017).

    [119] Li H, Liu H G, Chen X F. Nonlinear vortex beam array generation by spatially modulated fundamental wave[J]. Optics Express, 25, 28668-28673(2017).

    [120] Liu H G, Li J, Fang X L et al. Dynamic computer-generated nonlinear-optical holograms[J]. Physical Review A, 96, 023801(2017). http://adsabs.harvard.edu/abs/2017PhRvA..96b3801L

    [121] Liu H G, Zhao X H, Li H et al. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process[J]. Optics Letters, 43, 3236-3239(2018). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-43-14-3236

    [122] Liu H, Li H, Zheng Y et al. Nonlinear frequency conversion and manipulation of vector beams[J]. Optics Letters, 43, 5981-5984(2018). http://www.osapublishing.org/ol/abstract.cfm?uri=ol-43-24-5981

    [123] Li H, Liu H G, Chen X F. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer[J]. Applied Physics Letters, 114, 241901(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112960306.html

    [124] Li H, Liu H G, Chen X F[J]. Dual waveband generator of perfect vector beams Photonics Research, 2019, 1340-1344.

    [125] Vellekoop I M, Mosk A P. Universal optimal transmission of light through disordered materials[J]. Physical Review Letters, 101, 120601(2008). http://www.ncbi.nlm.nih.gov/pubmed/18851352

    [126] Horstmeyer R, Ruan H, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4900467/

    [127] Park C, Park J H, Rodriguez C et al. Full-field subwavelength imaging using a scattering superlens[J]. Physical Review Letters, 113, 113901(2014). http://www.tandfonline.com/servlet/linkout?suffix=cit0147&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=25259979

    [128] Lai P, Wang L, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J], 9, 126-132(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=b6fca568e8bd9db06d90d2a21f07faf6

    [129] Qiao Y, Peng Y, Zheng Y et al. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping[J]. Optics Letters, 42, 1895-1898(2017).

    [130] Qiao Y, Peng Y, Zheng Y et al. Adaptive pumping for spectral control of broadband second-harmonic generation[J]. Optics Letters, 43, 787-790(2018). http://europepmc.org/abstract/MED/29443994

    [131] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018). http://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201700256

    [132] Qi Y F, Li Y. Integrated lithium niobate photonics[J]. Nanophotonics, 9, 1287-1320(2020).

    [133] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 5, 1438-1441(2018).

    [134] Roussev R V, Langrock C, Kurz J R et al. Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths[J]. Optics Letters, 29, 1518-1520(2004).

    [135] Niu Y, Lin C, Liu X et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains[J]. Applied Physics Letters, 116, 101104(2020).

    [136] Gainutdinov R V, Volk T R, Zhang H H. Domain-wall conduction in AFM-written domain patterns in ion-sliced LiNbO3 films[J]. Applied Physics Letters, 110, 132905(2020).

    [137] Lu J J, Surya J B, Liu X W et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 6, 1455-1460(2019).

    [138] Wolf R, Jia Y C, Bonaus S et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries[J]. Optica, 5, 872-875(2018).

    [139] Liang H X, Luo R, He Y et al. High-quality lithium niobate photonic crystal nanocavities[J]. Optica, 4, 1251-1258(2017).

    [140] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).

    [141] Wang M, Wu R B, Lin J T et al. Chemo-mechanical Polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019). http://onlinelibrary.wiley.com/doi/full/10.1002/que2.9

    [142] Liu S J, Zheng Y L, Chen X F. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk[J]. Optics Letters, 42, 3626-3629(2017). http://europepmc.org/abstract/MED/28914918

    [143] Liu S J, Zheng Y L, Fang Z W et al. Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes[J]. Optics Letters, 44, 1456-1459(2019). http://www.researchgate.net/publication/331716449_Effective_four-wave_mixing_in_the_lithium_niobate_on_insulator_microdisk_by_cascading_quadratic_processes

    [144] Ye X N, Liu S J, Chen Y P et al. Sum-frequency generation in lithium-niobate-on-insulator microdisk via modal phase matching[J]. Optics Letters, 45, 523-526(2020). http://www.researchgate.net/publication/337961015_Sum-frequency_generation_in_lithium_niobate-on-insulator_microdisk_via_modal_phase_matching

    [145] Carmon T, Vahala K J. Visible continuous emission from a silica microphotonic device by third-harmonic generation[J]. Nature Physics, 3, 430-435(2007).

    [146] Farnesi D, Barucci A, Righini G C et al. Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators[J]. Physical Review Letters, 112, 093901(2014). http://www.ncbi.nlm.nih.gov/pubmed/24655251

    [147] Levy J S, Foster M A, Gaeta A L et al. Harmonic generation in silicon nitride ring resonators[J]. Optics Express, 19, 11415-11421(2011).

    [148] Hao Z Z, Zhang L, Mao W B et al. Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators[J]. Photonics Research, 8, 311-317(2020). http://www.opticsjournal.net/Articles/Abstract?aid=OJd94588f412471465

    [149] Lin J T, Xu Y X, Ni J L et al. Phase-matched second-harmonic generation in an on-ChipLiNbO3 microresonator[J]. Physical Review Applied, 6, 014002(2016). http://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.6.014002

    [150] Luo R, He Y, Liang H X et al. Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation[J]. Laser & Photonics Reviews, 13, 1800288(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204113000555.html

    [151] Ding T, Zheng Y, Chen X. Integration of cascaded electro-optic and nonlinear processes on a lithium niobate on insulator chip[J]. Optics Letters, 44, 1524-1527(2019). http://www.researchgate.net/publication/331789713_Integration_of_cascaded_electro-optic_and_nonlinear_processes_on_a_lithium_niobate_on_insulator_chip

    [152] Wang D, Ding T T, Zheng Y L et al. Cascaded sum-frequency generation and electro-optic polarization coupling in the PPLNOI ridge waveguide[J]. Optics Express, 27, 15283-15288(2019). http://www.ncbi.nlm.nih.gov/pubmed/31163725

    [153] Wu J F, Huang Y W, Lu C Y et al. Tunable linear polarization-state generator of single photons on a lithium niobate chip[J]. Physical Review Applied, 13, 064068(2020). http://www.researchgate.net/publication/342543766_Tunable_Linear_Polarization-State_Generator_of_Single_Photons_on_a_Lithium_Niobate_Chip

    [154] Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).

    [155] Del'Haye P, Schliesser A, Arcizet O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007). http://www.nature.com/articles/nature06401/

    [156] Wu Z J, Ming Y, Xu F et al. Optical frequency comb generation through quasi-phase matched quadratic frequency conversion in a micro-ring resonator[J]. Optics Express, 20, 17192-17200(2012). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-15-17192

    [157] Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019). http://www.ncbi.nlm.nih.gov/pubmed/30858615

    [158] Ho K P, Kahn J M. Optical frequency comb generator using phase modulation in amplified circulating loop[J]. IEEE Photonics Technology Letters, 5, 721-725(1993).

    [159] Wang C, Zhang M, Yu M et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019). http://www.ncbi.nlm.nih.gov/pubmed/30816151

    [160] Sun Q C, Mao Y L, Chen S J et al. Quantum teleportation with independent sources and prior entanglement distribution over a network[J]. Nature Photonics, 10, 671-675(2016).

    [161] Leuenberger M N, Loss D. Quantum computing in molecular magnets[J]. Nature, 410, 789-793(2000). http://www.nature.com/articles/35071024

    [162] Specht H P, Nöelleke C, Reiserer A et al[J]. A single-atom quantum memory Nature, 2011, 190-193.

    [163] Yurke B, Denker J S. Quantum network theory[J]. Physical Review A, 29, 1419(1984).

    [164] Comandar L C, Lucamarini M, Fröhlich B et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers[J]. Nature Photonics, 10, 312-315(2016). http://www.nature.com/articles/nphoton.2016.50

    [165] Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 509, 475-478(2014).

    [166] Li Y H, Cao Y, Dai H et al. Experimental round-robin differential phase-shift quantum key distribution[J]. Physical Review A, 93, 030302(2016).

    [167] Li X Y, Voss P L, Sharping J E et al. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band[J]. Physical Review Letters, 94, 053601(2005).

    [168] Napolitano M, Koschorreck M, Dubost B et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit[J]. Nature, 471, 486-489(2011).

    [169] Miller J, Miyake A. Resource quality of a symmetry-protected topologically ordered phase for quantum computation[J]. Physical Review Letters, 114, 120506(2015). http://dx.doi.org/10.1103/physrevlett.114.120506

    [170] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 94, 230503(2005). http://www.ncbi.nlm.nih.gov/pubmed/16090451

    [171] Varnava M, Browne D E, Rudolph T. How good must single photon sources and detectors be for efficient linear optical quantum computation?[J]. Physical Review Letters, 100, 060502(2008).

    [172] Hosseini M, Sparkes B M, Campbell G et al. High efficiency coherent optical memory with warm rubidium vapour[J]. Nature Communications, 2, 174(2011). http://www.nature.com/articles/ncomms1175

    [173] Li Y, Xiang T, Nie Y et al. Spectral compression of single-photon-level laser pulse[J]. Scientific Reports, 7, 43494(2017). http://www.nature.com/articles/srep43494

    [174] Xiang T, Li Y H, Zheng Y L et al. Multiple-DWDM-channel heralded single-photon source based on a periodically poled lithium niobate waveguide[J]. Optics Express, 25, 12493-12498(2017).

    [175] Li Y H, Xiang T, Nie Y Y et al. Nonlinear interaction between broadband single-photon-level coherent states[J]. Photonics Research, 5, 324-328(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170705000412fLiOlR

    [176] Kumar P. Quantum frequency conversion[J]. Optics Letters, 15, 1476-1478(1990).

    [177] Xiang T, Sun Q C, Li Y H et al. Single-photon frequency conversion via cascaded quadratic nonlinear processes[J]. Physical Review A, 97, 063810(2018). http://www.researchgate.net/publication/325663951_Single-photon_frequency_conversion_via_cascaded_quadratic_nonlinear_processes

    [178] Liao S K, Cai W Q, Handsteiner J et al. Satellite-relayed intercontinental quantum network[J]. Physical Review Letters, 120, 030501(2018).

    [179] Xu P, Yong H L, Chen L K et al. Two-hierarchy entanglement swapping for a linear optical quantum repeater[J]. Physical Review Letters, 119, 170502(2017).

    [180] Pan J W, Bouwmeester D, Weinfurter H et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 80, 3891(1998). http://www.ams.org/mathscinet-getitem?mr=1623729

    [181] Sun Q C, Jiang Y F, Mao Y L et al. Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources[J]. Optica, 4, 1214-1218(2017).

    [182] Sangouard N, Sanguinetti B, Curtz N et al. Faithful entanglement swapping based on sum-frequency generation[J]. Physical Review Letters, 106, 120403(2011).

    [183] Guerreiro T, Pomarico E, Sanguinetti B et al. Interaction of independent single photons based on integrated nonlinear optics[J]. Nature Communications, 4, 2324(2013). http://www.nature.com/articles/ncomms3324

    [184] Guerreiro T, Martin A, Sanguinetti B et al. Nonlinear interaction between single photons[J]. Physical Review Letters, 113, 173601(2014). http://europepmc.org/abstract/MED/25379916

    [185] Li Y H, Huang Y W, Xiang T et al. Multiuser time-energy entanglement swapping based on dense wavelength division multiplexed and sum-frequency generation[J]. Physical Review Letters, 123, 250505(2019). http://www.ncbi.nlm.nih.gov/pubmed/31922812

    Xianfeng Chen, Yuanlin Zheng, Haigang Liu, Shijie Liu, Yuanhua Li, Xiaohui Zhao. New Principle, Platform, and Application of Nonlinear Frequency Conversion[J]. Acta Optica Sinica, 2021, 41(1): 0119001
    Download Citation