• Laser & Optoelectronics Progress
  • Vol. 57, Issue 9, 091404 (2020)
Ketai He, Liu Zhou*, and Lechang Yang
Author Affiliations
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • show less
    DOI: 10.3788/LOP57.091404 Cite this Article Set citation alerts
    Ketai He, Liu Zhou, Lechang Yang. Microstructure and Mechanical Properties of 316L Stainless Steel in the Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091404 Copy Citation Text show less
    References

    [1] Gu D D, Meiners W, Wissenbach K et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 57, 133-164(2012).

    [2] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [3] Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 63, 856-867(2014).

    [4] Luo C, Qiu J H, Yan Y G et al. Finite element analysis of temperature and stress fields during the selective laser melting process of thermoelectric SnTe[J]. Journal of Materials Processing Technology, 261, 74-85(2018).

    [5] Chen Z, Xiang Y, Wei Z Y et al. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification[J]. Applied Physics A, 124, 313(2018).

    [6] Ma R Q, Zhang K, Wei H L et al. Formation mechanism of surface microstructure in selective laser melting of alumina ceramic based on numerical simulation[J]. Chinese Journal of Lasers, 46, 0202002(2019).

    [7] Sun Z J, Tan X P, Tor S B et al. Selective laser melting of stainless steel 316L with low porosity and high build rates[J]. Materials & Design, 104, 197-204(2016).

    [8] Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering A, 584, 21-31(2013).

    [9] Cherry J A, Davies H M, Mehmood S et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 76, 869-879(2015).

    [10] Sun S H, Ishimoto T, Hagihara K et al. Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting[J]. Scripta Materialia, 159, 89-93(2019).

    [11] Liu Y J, Liu Z, Jiang Y et al. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg[J]. Journal of Alloys and Compounds, 735, 1414-1421(2018).

    [12] Gu D D, Shi Q M, Lin K J et al. Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting[J]. Additive Manufacturing, 22, 265-278(2018).

    [13] Zhang Z, Farahmand P, Kovacevic R. Laser cladding of 420 stainless steel with molybdenum on mild steel A36 by a high power direct diode laser[J]. Materials & Design, 109, 686-699(2016).

    [14] Liu S W, Zhu H H, Peng G Y et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 142, 319-328(2018).

    [15] He K T, Zhao X. 3D thermal finite element analysis of the SLM 316L parts with microstructural correlations[J]. Complexity, 2018, 1-13(2018).

    [16] Hussein A, Hao L, Yan C Z et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Materials & Design, 52, 638-647(2013).

    [17] Li YL, Gu D D. Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study[J]. AdditiveManufacturing, 2014, 1/2/3/4: 99- 109.

    [18] Sun S B, Zheng L J, Liu Y Y et al. Selective laser melting of Al-Fe-V-Si heat-resistant aluminum alloy powder: modeling and experiments[J]. The International Journal of Advanced Manufacturing Technology, 80, 1787-1797(2015).

    [19] Dong Z C, Liu Y B, Wen W B et al. Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: modeling and experimental approaches[J]. Materials, 12, 50(2018).

    [20] Zhang G H, Guo S Q, Huang S et al. Density analysis of GH4169 superalloy prepared by selective laser melting[J]. Laser & Optoelectronics Progress, 57, 031404(2019).

    [21] Shen F, Yuan S Q, Chua C K et al. Development of process efficiency maps for selective laser sintering of polymeric composite powders: modeling and experimental testing[J]. Journal of Materials Processing Technology, 254, 52-59(2018). http://www.sciencedirect.com/science/article/pii/S092401361730540X

    [22] Yadroitsev I, Gusarov A, Yadroitsava I et al. Single track formation in selective laser melting of metal powders[J]. Journal of Materials Processing Technology, 210, 1624-1631(2010).

    [23] Zhong Y, Liu L F, Wikman S et al. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting[J]. Journal of Nuclear Materials, 470, 170-178(2016).

    [24] Montero-Sistiaga M L, Godino-Martinez M, Boschmans K et al. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 23, 402-410(2018).

    [25] Wang D, Song C H, Yang Y Q et al. Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts[J]. Materials & Design, 100, 291-299(2016).

    [26] Huang Y, Yang L J, Du X Z et al. Finite element analysis of thermal behavior of metal powder during selective laser melting[J]. International Journal of Thermal Sciences, 104, 146-157(2016).

    [27] Shi Q M, Gu D D, Xia M J et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites[J]. Optics & Laser Technology, 84, 9-22(2016). http://www.sciencedirect.com/science/article/pii/S0030399215307349

    [28] Zhou X, Li K L, Zhang D D et al. Textures formed in a CoCrMo alloy by selective laser melting[J]. Journal of Alloys and Compounds, 631, 153-164(2015).

    [29] Kamaya M. Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction[J]. Materials Characterization, 60, 125-132(2009).

    [30] Xue P, Xiao B L, Ma Z Y. Enhanced strength and ductility of friction stir processed Cu-Al alloys with abundant twin boundaries[J]. Scripta Materialia, 68, 751-754(2013).

    [31] Li X, Shi J J, Cao G H et al. Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process[J]. Materials & Design, 180, 107915(2019).

    [32] Zhang M N. Microstructure and properties of CoCrMoNbTi and AlCoCuFeNi high entropy alloys by additive manufacturing technology[D]. Beijing: University of Science and Technology Beijing(2018).

    [33] Hansen N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia, 51, 801-806(2004).

    [34] Chen Z, Chen S G, Wei Z Y et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting[J]. Progress in Natural Science: Materials International, 28, 496-504(2018).

    [35] Casati R, Lemke J, Vedani M. Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting[J]. Journal of Materials Science & Technology, 32, 738-744(2016).

    [36] Zhong X W, Gao Q, Zhou H Z et al. Study on 316L anisotropy and laser energy density based on laser selective melting[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [37] Suryawanshi J, Prashanth K G, Scudino S et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 115, 285-294(2016).

    [38] Koyama M, Zhang Z, Wang M M et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 355, 1055-1057(2017).

    [39] Ni M, Chen C, Wang X J et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Materials Science and Engineering A, 701, 344-351(2017). http://www.sciencedirect.com/science/article/pii/S0921509317308651

    Ketai He, Liu Zhou, Lechang Yang. Microstructure and Mechanical Properties of 316L Stainless Steel in the Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(9): 091404
    Download Citation