• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 127001 (2021)
Luo Dandan1、2, Mu Qixiong1、2, and Huang Yanxia1、2、*
Author Affiliations
  • 1College of Physics and Electronic Science, Hubei Normal University, Huangshi, Hubei 435002, China
  • 2Key Laboratory of Quantum Information, Chinese Academy of Science, Hefei, Anhui 230026, China
  • show less
    DOI: 10.3788/LOP202158.0127001 Cite this Article Set citation alerts
    Luo Dandan, Mu Qixiong, Huang Yanxia. Effect of Dzyaloshinskii-Moriya Interaction on Thermal Entanglement of Heisenberg XYZ Chains Under External Magnetic Field[J]. Laser & Optoelectronics Progress, 2021, 58(1): 127001 Copy Citation Text show less
    References

    [1] Schrodinger E. Die gegenwärtige situation in der quantenmechanik[J]. Naturwissenschaften, 23, 807-812(1935).

    [2] Kronz F M. Range of violations of Bell's inequality by entangled photon pairs[J]. Physics Letters A, 279, 287-290(2001).

    [3] Nagy M, Akl S G. Quantum computation and quantum information[J]. International Journal of Parallel, Emergent and Distributed Systems, 21, 1-59(2006).

    [4] Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 560, 7-11(2014).

    [5] Zhu Q L, Shi L, Wei J H et al. Background light suppression in free space quantum key distribution[J]. Laser & Optoelectronics Progress, 55, 060004(2018).

    [6] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895-1899(1993).

    [7] Fan H, Wang Y N, Jing L et al. Quantum cloning machines and the applications[J]. Physics Reports, 544, 241-322(2014). http://www.sciencedirect.com/science/article/pii/S0370157314002099

    [8] Ban M. Information transmission via dense coding in a noisy quantum channel[J]. Physics Letters A, 276, 213-220(2000).

    [9] Xu Y L. Quantum correlation and quantum phase transition of spin systems[D]. Qufu: Qufu Normal University, 7-14(2015).

    [10] Jiang C L. Quantum entanglement and information process in cavity QED and Heisenberg spin system[D]. Changsha: Hunan Normal University, 38-45(2009).

    [11] Huang L Y. Quantum thermal entanglement and the entanglement teleportation in the Heisenberg model[D]. Changsha: Hunan Normal University, 13-15(2008).

    [12] Huang A J, Wang D, Wang J M et al. Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field[J]. Quantum Information Processing, 16, 204-215(2017).

    [13] Kane B. A silicon-based nuclear spin quantum computer[J]. Nature, 393, 133-137(1998).

    [14] Vrijen R, Yablonovitch E, Wang K et al. Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures[J]. Physical Review A, 62, 012306(2000).

    [15] Burkard G, Loss D, Divincenzo D P. Coupled quantum dots as quantum gates[J]. Physical Review B, 59, 2070-2078(1999). http://www.oalib.com/paper/3353030

    [16] Wang L C, Yan J Y, Yi X X. Thermal quantum discord in Heisenberg models with Dzyaloshinski: Moriya interaction[J]. Chinese Physics B, 20, 040305(2011).

    [17] Huang L Y, Fang M F. Thermal entanglement in Heisenberg chain with Dzyaloshinski-Moriya interaction in external magnetic fields[J]. Chinese Journal of Quantum Electronics, 35, 444-450(2018).

    [18] Hu X M, Liu J M. Effects of Dzyaloshinski-Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model[J]. Chinese Physics B, 18, 411-417(2009).

    [19] Zhou C B. Investigation of quantum correlation and quantum phase transition in Heisenberg model with Dzyaloshinskii-Moriya interaction in an inhomogeneous external magnetic field[D]. Chongqing: Southwest University, 13-36(2016).

    [20] Xie L J, Zhang D Y, Tang S Q et al. Thermal entanglement and teleportation in a three-qubit Heisenberg XXZ model with Dzyaloshinski-Moriya anisotropic antisymmetric interaction[J]. Chinese Physics B, 18, 3203-3209(2009).

    [21] Gao D, Zhao Z S, Zhu A D et al. Teleportation and thermal entanglement in two-qubit Heisenberg XYZ spin chain with the Dzyaloshinski-Moriya interaction and the inhomogeneous magnetic field[J]. Chinese Physics B, 19, 090313(2010).

    [22] Guo Z Y, Xiao R H, Fang D X. Dynamics of quantum discord for Ising system with Dzialoshinskii-Moriya interaction[J]. Chinese Journal of Quantum Electronics, 29, 547-554(2012).

    [23] Yi T C, Ding Y R, Ren J et al. Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction[J]. Acta Physica Sinica, 67, 140303(2018).

    [24] Liu X Y, Ren X Z, Xu Y H. Entanglement properties of Tavis-Cummings model without rotating wave approximation[J]. Laser & Optoelectronics Progress, 55, 102701(2018).

    [25] Lu F. Controllable quantum entanglement based on cavity structure[J]. Laser & Optoelectronics Progress, 56, 042701(2019).

    [26] Wei T L, Wu D W, Li X et al. Entanglement characteristics of squeezed vacuum state after beam splitter[J]. Laser & Optoelectronics Progress, 56, 152701(2019).

    [27] Zhang Z P, Liu G J, Dong K et al. Key pool construction of quantum key distribution optical network[J]. Laser & Optoelectronics Progress, 56, 212703(2019).

    [28] Xi Y X, Shan C J, Huang Y X. Quantum teleportation in an XXZ spin chain system with three-site interaction[J]. Acta Physica Sinica, 63, 110305(2014).

    [29] Cong M Y, Yang J, Huang Y X. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states[J]. Acta Physica Sinica, 65, 170301(2016).

    [30] Yang J, Huang Y X. Tripartite and bipartite quantum correlations in the XXZ spin chain with three-site interaction[J]. Quantum Information Processing, 16, 281(2017).

    [31] Yang J, Mu Q X, Huang Y X. The dynamics of tripartite quantum correlations under Ornstein-Uhlenbeck noise[J]. Modern Physics Letters B, 32, 1850381(2018). http://www.worldscientific.com/doi/10.1142/S0217984918503815

    [32] Dzyaloshinsky I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics[J]. Journal of Physics and Chemistry of Solids, 4, 241-255(1958). http://www.sciencedirect.com/science/article/pii/0022369758900763

    [33] Moriya T. New mechanism of anisotropic superexchange interaction[J]. Physical Review Letters, 4, 228-230(1960). http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1960PhRvL...4..228M

    [34] Liu S X, Li S S, Kong X M. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model[J]. Acta Physica Sinica, 60, 030303(2011).

    [35] Zou Q, Hu X M, Liu J M. Effects of Dzyaloshinskii-Moriya interaction and intrinsic decoherence on quantum dense coding via a two-qubit Heisenberg spin system[J]. Acta Physica Sinica, 64, 080302(2015).

    [36] Tursun M, Abliz A, Wu J Q et al. Super quantum discord in two qubit Heisenberg XYZ model with Dzyaloshinski-Moriya interaction[J]. Chinese Journal of Quantum Electronics, 33, 215-219(2016).

    [37] Tursun M, Abliz A, Mamtimin R et al. Various correlations in the anisotropic Heisenberg XYZ model with Dzyaloshinski-Moriya interaction[J]. Chinese Physics Letters, 30, 030303(2013).

    [38] Park D. Thermal entanglement and thermal discord in two-qubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions[J]. Quantum Information Processing, 18, 172(2019).

    [39] Mu Q X, Yang J, Luo D D et al. Influence of anisotropy and spin coupling parameters on the quantum entanglement of Heisenberg XYZ chain[J]. Laser & Optoelectronics Progress, 56, 242701(2019).

    [40] WoottersW K. Entanglement of formation of an arbitrary state of two qubits[J]. Physical Review Letters, 80, 2245-2248(1998).

    Luo Dandan, Mu Qixiong, Huang Yanxia. Effect of Dzyaloshinskii-Moriya Interaction on Thermal Entanglement of Heisenberg XYZ Chains Under External Magnetic Field[J]. Laser & Optoelectronics Progress, 2021, 58(1): 127001
    Download Citation