• Photonic Sensors
  • Vol. 8, Issue 3, 193 (2018)
Subhankar N.1, Barlina KONWAR1, Simran KAUR2, Robin DOLEY2, and Biplob MONDAL1、*
Author Affiliations
  • 1Department of Electronics and Communication Engineering, Tezpur University, Tezpur 784028, Assam, India
  • 2Deptment of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
  • show less
    DOI: 10.1007/s13320-018-0501-1 Cite this Article
    Subhankar N., Barlina KONWAR, Simran KAUR, Robin DOLEY, Biplob MONDAL. Study on Snake Venom Protein-Antibody Interaction by Surface Plasmon Resonance Spectroscopy[J]. Photonic Sensors, 2018, 8(3): 193 Copy Citation Text show less
    References

    [1] P. R. Edwards, A. Gill, D. V. Pollard-Knight, M. Hoare, P. E. Buckle, P. A. Lowe, et al., “Kinetics of protein-protein interactions at the surface of an optical biosensor,” Analytical Biochemistry, 1995, 231(1): 210-217.

    [2] T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Analytical Chemistry, 2005, 77(21): 6976–6984.

    [3] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, 2003, 377(3), 528–539.

    [4] H. Lijie, P. Quentin, L. Iban, Y. S. Aritz, P. Amaia, Z. Amaia, et al., “Label-free femtomolar cancer biomarker detection in human serum using grapheme coated surface plasmon resonance chip,” Biosensors and Bioelectronics, 2017, 89(1): 606–611.

    [5] E. Mauriz, A. Calle, J. J. Manclús, A. Montoya, and L. M. Lechuga. “Multi-analyte SPR immunoassays for environmental biosensing of pesticides,” Analytical & Bioanalytical Chemistry, 2007, 387(4): 1449-1458.

    [6] Y. Li, X. Liu, and Z. Lin, “Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs,” Food Chemistry, 2012, 132(3): 1549–1554.

    [7] H. R. Sim, A. W. Wark, and H. J. Lee, “Attomolar detection of protein biomarkers using biofunctionalized gold nanorods with surface plasmon resonance,” Analyst, 2010, 135(10): 2528-2532.

    [8] Y. Wang, W. Knoll, and J. Dostalek, “Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays,” Analytical Chemistry, 2012, 84(19): 8345–8350.

    [9] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, 2008, 108: 462–493.

    [10] K. Yokoyama, M. Oishi, and M. Oshima, “Development of an enhanced surface plasmon resonance sensor substrate by investigating a periodic nanohole array configuration,” Journal of Applied Physics, 2015, 118(2): 023101-1-023101-7.

    [11] R. Boruah, D. Mohanta, A Choudhury, P. Nath, and G. A. Ahmed, “Surface plasmon resonance-based protein bio-sening using a Krestschmann configured double prism arrangement,” IEEE Sensors Journal, 2015, 15: 6791-6796.

    [12] Y. W. Fen, W. M. M. Yunus, Z. A. Talib, and N. A. Yusof, “Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe,” Spectrochemica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 134: 48–52.

    [13] D. G. Hong, T. W. Kim, K. B. Kim, J. S. Yuk, and K. S. Ha, “Development of an immunosensor with angular interrogation-based SPR spectroscopy,” Measurement Science & Technology, 2007, 18(5): 1367-1371.

    [14] E. Kretschmann and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Zeitschrift für Naturforschung, 1968, 23: 2135–2136.

    [15] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift Für Physik, 1968, 216(4): 398–410.

    [16] R. A. Harrison, A. Hargreaves, S. C. Wagstaff, B. Faragher, and D. G. Lalloo, “Snakebite envenoming: a disease of poverty,” PLoS Neglected Tropical Diseases, 2009, 3(12): 1-6.

    [17] J. J. Calvete, P. Juárez, and L. Sanz, “Snake venomics: strategy and applications,” Journal of Mass Spectrometry, 2010, 42(11): 1405-1414.

    [18] L. V. Dong, K. H. Eng, L. K. Quyen, and P. Gopalakrishnakone, “Optical immunoassay for snake venom detection,” Biosensors and Bioelectronics, 2004, 19(10): 1285–1294.

    [19] G. D. Brand, R. Salbo, T. J. J?rgensen, C. Jr. Bloch, E. E. Boeri, C. V. Robinson, et al., “The interaction of the antitoxin DM43 with a snake venom metalloproteinase analyzed by mass spectrometry and surface plasmon resonance,” Journal of Mass Spectrometry, 2012, 47(5): 567-573.

    [20] I. Malih, M. R. A. Rusmili, T. Y. Tee, Rachid Saile, Noreddine Ghalim, and Iekhsan Othman, “Proteomic analysis of Moroccan cobra naja haje legionis venom using tandem mass spectrometry,” Journal of Proteomics, 2014, 96(2): 240–252.

    [21] H. J Simon, D. E Mitchell, and J. G Watson, “Surface plasmons in silver films – a novel undergraduate experiment,” American Journal of Physics, 1975, 43(7): 630-636.

    [22] S. Szunerits, X. Castel, and R. Boukherroub, “Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity,” Journal of Physics Chemistry C, 2008, 112: 15813–15817.

    [23] X. C. Yuan, B. H. Ong, Y. G. Tan, D. W. Zhang, R. Irawan, and S. C. Tjin, “Sensitivitystability- optimized surface plasmon resonance sensing with double metal layers,” Journal of Optics A Pure & Applied Optics, 2006, 8(11): 959–963.

    [24] S. B. Nimse, K. Song, M. D. Sonawane, D. R. Sayyed, and T. Kim, “Immobilization techniques for microarray: challenges and applications,” Sensors, 2014, 14(12): 22208-22229.

    [25] F. Rusmini, Z. Zhong, and J. Feijen, “Protein immobilization strategies for protein biochis,” Biomacromolecules, 2007, 8(6): 1775-1789.

    [26] J. E. Lee, J. H. Seo, C. S. Kim, Y. Kwon, J. H. Ha, S. S. Choi, et al., “A comparative study on antibody immobilization strategies onto solid surface,” Korean Journal of Chemical Engineering, 2013, 30(10): 1934-1938.

    [27] C. D. Hodneland, Y. S. Lee, D. H. Min, and M. Mrksich, “Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands,” Proceedings of the National Academy of Sciences, 2002, 99(8): 5048-5052.

    [28] R. F. Peters, L. Gutierrez-Rivera, S. K. Dew, and M. Stepanova, “Surface enhanced Raman spectroscopy detection of biomolecules using EBL fabricated nanostructured substrates,” Journal of Visualized Experiments Jove, 2015, 2015(97): e52712-1-e52712-17.

    [29] L. F. Hoyt, “New table of the refractive index of pure glycerol at 20 ℃,” Industrial & Engineering Chemistry, 1934, 26(3): 329-332.

    [30] K. Aslan, C. C. Luhrs, and V. H. Pérez-Luna, “Controlled and reversible aggregation of biotinylated gold nanoparticles with streptavidin,” Journal of Physical Chemistry B, 2004, 108(40): 15631-15639.

    [31] G. Weng, J. Li, and J. Zhoa, “Enhanced resonance light scattering of antibody covalently conjugated gold nanoparticles due to antigen-antibody interaction induced aggregation,” Nanoscience and Nanotechnology Letters, 2013, 5(8): 1-7.

    [32] B. M. Amoli, S. Gumfekar, A. Hu, Y. N. Zhou, and B. Zhao, “Thiocarboxylate functionalization of silver nanoparticles: effect of chain length on the electrical conductivity of nanoparticles and their polymer composites,” Journal of Materials Chemistry, 2012, 22(37): 20048-20056.

    [33] E. Goormaghtigh, J. M. Ruysschaert, and V. Raussens, “Evaluation of the information content in infrared spectra for protein secondary structure determination,” Biophysical Journal, 2006, 90(8): 2946–2957.

    Subhankar N., Barlina KONWAR, Simran KAUR, Robin DOLEY, Biplob MONDAL. Study on Snake Venom Protein-Antibody Interaction by Surface Plasmon Resonance Spectroscopy[J]. Photonic Sensors, 2018, 8(3): 193
    Download Citation