• Chinese Optics Letters
  • Vol. 19, Issue 9, 091407 (2021)
Hongkun Nie1, Feifei Wang1, Junting Liu1, Kejian Yang1、2, Baitao Zhang1、2、*, and Jingliang He1、2
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    DOI: 10.3788/COL202119.091407 Cite this Article Set citation alerts
    Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407 Copy Citation Text show less
    References

    [1] H. Gebbie, W. Harding, C. Hilsum, A. Pryce, P. Sciences. Atmospheric transmission in the 1 to 14 µm region. Proc. R. Soc. A, 206, 87(1951).

    [2] L. S. Rothman, R. Gamache, R. Tipping, C. Rinsland, M. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, R. Transfer. The HITRAN molecular database: editions of 1991 and 1992. J. Quantum Spectrosc. Radiat. Transfer, 48, 469(1992).

    [3] L. S. Rothman, C. Rinsland, A. Goldman, S. Massie, D. Edwards, J. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi. The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition. J. Quantum Spectrosc. Radiat. Transfer, 60, 665(1998).

    [4] J. E. Bertie, Z. J. A. S. Lan. Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O at 25 C between 15,000 and 1 cm− 1. Am. Chem. Soc., 50, 1047(1996).

    [5] S. R. Bowman, W. S. Rabinovich, A. P. Bowman, B. J. Feldman. 3 µm laser performance of Ho:YAlO3 and Nd,Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).

    [6] T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihara, M. Kikuchi. High-power continuous-wave and cascade Ho3+:ZBLAN fiber laser and its medical applications. IEEE J. Sel. Top. Quantum Electron., 5, 936(1999).

    [7] S. D. Jackson. Single-transverse-mode 2.5 W holmium-doped fluoride fiber laser operating at 2.86 µm. Opt. Lett., 29, 334(2004).

    [8] C. Wang, H. Xia, Z. Feng, Z. Zhang, D. Jiang, J. Zhang, Q. Sheng, Q. Tang, S. He, H. Jiang, B. Chen. Enhanced emission at 2.85 µm of Ho3+/Pr3+ co-doped α-NaYF4 single crystal. Optoelectron. Lett., 12, 56(2016).

    [9] H. Nie, P. Zhang, B. Zhang, K. Yang, L. Zhang, T. Li, S. Zhang, J. Xu, Y. Hang, J. He. Diode-end-pumped Ho, Pr:LiLuF4 bulk laser at 2.95  µm. Opt. Lett., 42, 699(2017).

    [10] M. Tempus, W. Luethy, H. Weber, V. Ostroumov, I. Shcherbakov. 2.79 µm YSGG:Cr:Er laser pumped at 790 nm. IEEE J. Quantum Electron., 30, 2608(1994).

    [11] D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields. Diode-pumped 1 W continuous-wave Er:YAG 3 µm laser. Opt. Lett., 24, 385(1999).

    [12] X. Zhu, R. Jain. 10-W-level diode-pumped compact 2.78 µm ZBLAN fiber laser. Opt. Lett., 32, 26(2007).

    [13] S. Tokita, M. Murakami, S. Shimizu, M. Hashida, S. Sakabe. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 µm. Opt. Lett., 36, 2812(2011).

    [14] V. Fortin, M. Bernier, S. T. Bah, R. Vallee. 30 W fluoride glass all-fiber laser at 2.94 µm. Opt. Lett., 40, 2882(2015).

    [15] W. Yao, H. Uehara, H. Kawase, H. Chen, R. Yasuhara. Highly efficient Er:YAP laser with 6.9 W of output power at 2920 nm. Opt. Express, 28, 19000(2020).

    [16] T. Li, K. Beil, C. Krankel, C. Brandt, G. HuberAdvanced Solid-State Photonics. Laser performance of highly doped Er:Lu2O3 at 2.8 µm, AW5A.6(2012).

    [17] R. Woodward, M. Majewski, G. Bharathan, D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).

    [18] S. D. Jackson. Continuous wave 2.9 µm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett., 83, 1316(2003).

    [19] H. Luo, J. Li, Y. Gao, Y. Xu, X. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 µm using PbS nanoparticles. Opt. Lett., 44, 2322(2019).

    [20] Y. Wang, J. Li, Z. Zhu, Z. You, J. Xu, C. Tu. Mid-infrared emission in Dy:YAlO3 crystal. Opt. Mater. Express, 4, 1104(2014).

    [21] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, 538(2017).

    [22] P. L. Melngailis. Maser action in InAs diodes. Appl. Phys. Lett., 2, 176(1963).

    [23] D. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. Connolly, T. L. Belenky. 2.3–2.7 µm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Poton. Technol. Lett., 11, 794(1999).

    [24] A. D. Andreev, D. V. Donetsky. Analysis of temperature dependence of the threshold current in 2.3–2.6 µm InGaAsSb/AlGaAsSb quantum-well lasers. Appl. Phys. Lett., 74, 2743(1999).

    [25] H. Choi, S. Eglash, G. J. Turner. Double-heterostructure diode lasers emitting at 3 µm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers. Appl. Phys. Lett., 64, 2474(1994).

    [26] A. Joullié, P. Christol, A. N. Baranov, A. J. Vicet. Mid-Infrared 2–5 µm heterojunction laser diodes. Solid-State Mid-Infrared Laser Sources, 89(2003).

    [27] C. Sirtori, J. J. Nagle. Quantum cascade lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. C. R. Physique, 4, 639(2003).

    [28] D. Hofstetter, M. I. Faist. High Performance Quantum Cascade Lasers and Their Applications(2003).

    [29] G. Soboń, T. Martynkien, P. Mergo, L. Rutkowski, A. J. Foltynowicz. High-power frequency comb source tunable from 2.7 to 4.2 µm based on difference frequency generation pumped by an Yb-doped fiber laser. Opt. Lett., 42, 1748(2017).

    [30] J. Zhang, K. Fritsch, Q. Wang, F. Krausz, K. F. Mak, O. J. Pronin. Intra-pulse difference-frequency generation of mid-infrared (2.7–20 µm) by random quasi-phase-matching. Opt. Lett., 44, 2986(2019).

    [31] L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, J. B. Pierce. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B, 12, 2102(1995).

    [32] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100(2007).

    [33] H. Ishizuki, T. J. Taira. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm × 5 mm aperture. Opt. Lett., 30, 2918(2005).

    [34] Y. Peng, X. Wei, X. Luo, Z. Nie, J. Peng, Y. Wang, D. J. Shen. High-power and widely tunable mid-infrared optical parametric amplification based on PPMgLN. Opt. Lett., 41, 49(2016).

    [35] H. J. Krause, W. J. Daum. High-power source of coherent picosecond light pulses tunable from 0.41 to 12.9 µm. Appl. Phys. B, 56, 8(1993).

    [36] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express, 18, 26704(2010).

    [37] C. Zhao, Y. Hang, L. Zhang, J. Yin, P. Hu, E. Ma. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 µm and 2.9 µm lasers. Opt. Mater., 33, 1610(2011).

    [38] D. D. Hudson, S. D. Jackson, B. J. Eggleton. Novel laser sources in the mid-infrared. IEEE 3rd International Conference on Photonics, 381(2012).

    [39] P. Zhang, Y. Hang, L. Zhang. Deactivation effects of the lowest excited state of Ho3+ at 2.9 µm emission introduced by Pr3+ ions in LiLuF4 crystal. Opt. Lett., 37, 5241(2012).

    [40] J. Ma, Z. Qin, G. Xie, L. Qian, D. Tang. Review of mid-infrared mode-locked laser sources in the 2.0 µm–3.5 µm spectral region. Appl. Phys. Rev., 6, 140(2019).

    [41] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).

    [42] R. I. Woodward, M. R. Majewski, G. Bharathan, D. D. Hudson, A. Fuerbach, S. D. Jackson. Watt-level dysprosium fiber laser at 3.15 µm with 73% slope efficiency. Opt. Lett., 43, 1471(2018).

    [43] M. Robinson, D. P. Devor. Thermal switching of laser emission of Er3+ at 2.69 µm and Tm3+ at 1.86 µm in mixed crystals of CaF2:ErF3:TmF3. Appl. Phys. Lett., 10, 167(1967).

    [44] J. Chen, D. Sun, J. Luo, J. Xiao, H. Kang, H. Zhang, M. Cheng, Q. Zhang, S. Yin. Spectroscopic, diode-pumped laser properties and gamma irradiation effect on Yb, Er, Ho:GYSGG crystals. Opt. Lett., 38, 1218(2013).

    [45] V. Lupei, S. Georgescu, V. Florea. On the dynamics of population inversion for 3 µm Er3+ lasers. IEEE J. Quantum Electron., 29, 426(1993).

    [46] B. J. Dinerman, P. F. Moulton. 3-µm cw laser operations in erbium-doped YSGG, GGG, and YAG. Opt. Lett., 19, 1143(1994).

    [47] T. Jensen, V. G. Ostroumov, G. Huber. Upconversion processes in Er3+:YSGG and diode-pumped laser experiments at 2.8 µm. Advanced Solid State Lasers, IL4(1995).

    [48] C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger. Emission properties of an optimised 2.8 µm Er3+:YLF laser. Opt. Commun., 139, 215(1997).

    [49] T. Li, K. Beil, C. Kränkel, G. Huber. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 µm. Opt. Lett., 37, 2568(2012).

    [50] Y. Wang, Z. You, J. Li, Z. Zhu. En, and C. Tu, “Spectroscopic investigations of highly doped Er3+:GGGG and Er3+/Pr3+:GGGG crystals. J. Phys. D, 42, 215406(2009).

    [51] H. Zhang, X. Meng, C. Wang, P. Wang, L. Zhu, X. Liu, C. Dong, Y. Yang, R. Cheng, J. Dawes, J. Piper, S. Zhang, L. Sun. Growth, spectroscopic properties and laser output of Er:Ca4YO(BO3)3 and Er:Yb:Ca4YO(BO3)3 crystals. J. Crystal Growth, 218, 81(2000).

    [52] Y. D. Zavartsev, A. I. Zagumennyi, L. A. Kulevskii, A. V. Lukashev, P. P. Pashinin, P. A. Studenikin, I. A. Shcherbakov, A. F. Umyskov. Q-switching in a Cr3+: Yb3+: Ho3+: YSGG crystal laser based on the 5I6–5I7 (λ = 2.92 µm) transition. Quantum Electron., 29, 295(1999).

    [53] F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, I. M. Ranieri. Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals. J. Appl. Phys., 91, 624(2002).

    [54] J. Hu, H. Xia, H. Hu, X. Zhuang, Y. Zhang, H. Jiang, B. Chen. Enhanced 2.7 µm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull., 48, 2604(2013).

    [55] X. Zhuang, H. Xia, H. Hu, J. Hu, P. Wang, J. Peng, Y. Zhang, H. Jiang, B. Chen. Enhanced emission of 2.7 µm from Er3+/Nd3+-codoped LiYF4 single crystals. Mater. Sci. Eng. B, 178, 326(2013).

    [56] P. Wang, H. Xia, J. Peng, H. Hu, L. Tang, Y. Zhang, B. Chen, H. Jiang. Concentration effect of Nd3+ ion on the spectroscopic properties of Er3+/Nd3+ co-doped LiYF4 single crystal. Mater. Chem. Phys., 144, 349(2014).

    [57] Z. You, Y. Wang, J. Xu, Z. Zhu, J. Li, C. Tu. Diode-end-pumped midinfrared multiwavelength Er: Pr: GGG laser. IEEE Photon. Technol. Lett., 26, 667(2014).

    [58] J. Liu, X. Fan, J. Liu, W. Ma, J. Wang, L. Su. Mid-infrared self-Q-switched Er, Pr:CaF2 diode-pumped laser. Opt. Lett., 41, 4660(2016).

    [59] H. Xia, J. Feng, Y. Ji, Y. Sun, Y. Wang, Z. Jia, C. Tu. 2.7 µm emission properties of Er3+/Yb3+/Eu3+:SrGdGa3O7 and Er3+/Yb3+/Ho3+:SrGdGa3O7 crystals. J. Quant. Spectrosc. Radiat. Transfer, 173, 7(2016).

    [60] X. Zhao, D. Sun, J. Luo, H. Zhang, Z. Fang, C. Quan, L. Hu, M. Cheng, Q. Zhang, S. Yin. Laser performance of a 966 nm LD side-pumped Er,Pr:GYSGG laser crystal operated at 2.79 µm. Opt. Lett., 43, 4312(2018).

    [61] B. J. Dinerman, C. L. Moulton, A. Pinto. CW laser operation from Er:YAG, Er:GGG and Er:YSGG. Advanced Solid State Lasers, ML10(1992).

    [62] R. C. Stoneman, L. Esterowitz. Efficient resonantly pumped 2.8 µm Er3+:GSGG laser. Opt. Lett., 17, 816(1992).

    [63] A. Gallian, A. Martinez, P. Marine, V. Fedorov, S. Mirov, V. Badikov, D. Boutoussov, M. Andriasyan. Fe:ZnSe passive Q-switching of 2.8 µm Er:Cr:YSGG laser cavity. Proc. SPIE, 6451, 64510L(2007).

    [64] J. Luo, D. Sun, H. Zhang, Q. Guo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, S. Yin. Growth, spectroscopy, and laser performance of a 2.79 µm Cr,Er,Pr:GYSGG radiation-resistant crystal. Opt. Lett., 40, 4194(2015).

    [65] X. Zhao, D. Sun, J. Luo, H. Zhang, C. Quan, L. Hu, Z. Han, K. Dong, M. Cheng, S. Yin. Spectroscopic and laser properties of Er:LuSGG crystal for high-power approximately 2.8 µm mid-infrared laser. Opt. Express, 28, 8843(2020).

    [66] W. Q. Shi, R. Kurtz, J. Machan, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Er, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1218(1987).

    [67] Q. Hu, H. Nie, W. Mu, Y. Yin, J. Zhang, B. Zhang, J. He, Z. Jia, X. Tao. Bulk growth and an efficient mid-IR laser of high-quality Er:YSGG crystals. Crystengcomm, 21, 1928(2019).

    [68] R. Stoneman, J. Lynn, L. Esterowitz. Direct upper-state pumping of the 2.8 µm, Er3+:YLF laser. IEEE J. Quantum Electron., 28, 1041(1992).

    [69] C. Labbe, J. Doualan, P. Camy, R. Moncorgé, M. Thuau. The 2.8 µm laser properties of Er3+ doped CaF2 crystals. Opt. Commun., 209, 193(2002).

    [70] T. T. Basiev, Y. V. Orlovskii, M. V. Polyachenkova, P. P. Fedorov, S. V. Kuznetsov, V. A. Konyushkin, V. V. Osiko, O. K. Alimov, A. Y. Dergachev. Continuously tunable cw lasing near 2.75 µm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. Quantum Electron., 36, 591(2006).

    [71] J. Liu, X. Feng, X. Fan, Z. Zhang, B. Zhang, J. Liu, L. Su. Efficient continuous-wave and passive Q-switched mode-locked Er3+:CaF2-SrF2 lasers in the mid-infrared region. Opt. Lett., 43, 2418(2018).

    [72] R. Švejkar, J. Šulc, H. Jelínková, V. Kubeček, W. Ma, D. Jiang, Q. Wu, L. Su. Diode-pumped Er:SrF2 laser tunable at 2.7 µm. Opt. Mater. Express, 8, 1025(2018).

    [73] C. Quan, D. Sun, J. Luo, H. Zhang, Z. Fang, X. Zhao, L. Hu, M. Cheng, Q. Zhang, S. Yin. 2.7 µm dual-wavelength laser performance of LD end-pumped Er:YAP crystal. Opt. Express, 26, 28421(2018).

    [74] H. Kawase, R. Yasuhara. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er:YAP crystal at room temperature. Opt. Express, 27, 12213(2019).

    [75] L. Merkle, N. Ter-Gabrielyan, V. Fromzel. Cryogenic laser properties of Er:YAG and Er:Sc2O3-a comparison. Advanced Solid-State Photonics, AWA2(2011).

    [76] L. Wang, H. Huang, D. Shen, J. Zhang, H. Chen, Y. Wang, X. Liu, D. Tang. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 µm. Opt. Express, 22, 19495(2014).

    [77] H. Uehara, R. Yasuhara, S. Tokita, J. Kawanaka, M. Murakami, S. Shimizu. Efficient continuous wave and quasi-continuous wave operation of a 2.8 µm Er:Lu2O3 ceramic laser. Opt. Express, 25, 18677(2017).

    [78] X. Guan, J. Wang, Y. Zhang, B. Xu, Z. Luo, H. Xu, Z. Cai, X. Xu, J. Zhang, J. Xu. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers. Photon. Res., 6, 830(2018).

    [79] D. Yin, J. Wang, Y. Wang, P. Liu, J. Ma, X. Xu, D. Shen, Z. Dong, L. B. Kong, D. Tang. Fabrication of Er:Y2O3 transparent ceramics for 2.7  µm mid-infrared solid-state lasers. J. Euro. Ceram. Soc., 40, 444(2019).

    [80] Y. O. Aydın, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallée, M. Bernier. Diode-pumped mid-infrared fiber laser with 50% slope efficiency. Optica, 4, 235(2017).

    [81] N. Ter-Gabrielyan, V. Fromzel. Cascade generation at 1.62, 1.73 and 2.8 µm in the Er:YLF Q-switched laser. Opt. Express, 27, 20199(2019).

    [82] G. S. John, W. David, F. Josh. Efficient 1.5 W CW and 9  mJ quasi-CW TEM00 mode operation of a compact diode-laser-pumped 2.94 µm Er:YAG laser. Proc. SPIE, 7578, 75781E(2010).

    [83] B. Shen, H. Kang, P. Chen, J. Liang, Q. Ma, J. Fang, D. Sun, Q. Zhang, S. Yin, X. Yan, L. Gao. Performance of continuous-wave laser-diode side-pumped Er:YSGG slab lasers at 2.79 µm. Appl. Phys. B, 121, 511(2015).

    [84] L. You, D. Lu, Z. Pan, H. Yu, H. Zhang, J. Wang. High-efficiency 3 µm Er:YGG crystal lasers. Opt. Lett., 43, 5873(2018).

    [85] H. Xue, L. Wang, W. Zhou, H. Wang, J. Wang, D. Tang, D. Shen. Stable Q-switched mode-locking of 2.7 µm Er:Y2O3 ceramic laser using a semiconductor saturable absorber. Appl. Sci., 8, 1155(2018).

    [86] Z. D. Fleischman, T. Sanamyan. Spectroscopic analysis of Er3+:Y2O3 relevant to 27 µm mid-IR laser. Opt. Mater. Express, 6, 3109(2016).

    [87] T. Sanamyan, M. Dubinskii. Er3+-doped diode-pumped ceramic laser delivers 14 W CW at 2.7 µm. CLEO, CMY1(2011).

    [88] W. Yao, H. Uehara, S. Tokita, H. Chen, D. Konishi, M. Murakami, R. Yasuhara. LD-pumped 2.8 µm Er:Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency. Appl. Phys. Express, 14, 012001(2020).

    [89] H. Kawase, H. Uehara, H. Chen, R. Yasuhara. Passively Q-switched 2.9 µm Er:YAP single crystal laser using graphene saturable absorber. Appl. Phys. Express, 12, 102006(2019).

    [90] J. Chen, D. Sun, J. Luo, H. Zhang, R. Dou, J. Xiao, Q. Zhang, S. Yin. Spectroscopic properties and diode end-pumped 2.79 µm laser performance of Er,Pr:GYSGG crystal. Opt. Express, 21, 23425(2013).

    [91] M. Inochkin, L. Khloponin, V. Khramov, G. Altshuler, A. Erofeev, S. Wilson, F. Feldchein. High-efficiency diode-pumped Er:YLF laser with multi-wavelength generation. Proc. SPIE, 8235, 823502(2012).

    [92] S. Wüthrich, W. Lüthy, H. P. Weber. Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 µm. J. Appl. Phys., 68, 5467(1990).

    [93] A. Zajac, M. Skorczakowski, J. Swiderski, P. Nyga. Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications. Opt. Express, 12, 5125(2004).

    [94] P. Koranda, H. Jelínková, M. Nemec, J. Sulc, M. Cech. Electro-optically Q-switched Er:YAG laser. Lasers and Applications in Science and Engineering, 141(2005).

    [95] V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmar’kov, V. G. Polushkin, A. A. Voronov. 2.94 µm Er:YAG Q-switched laser with FE2+:ZnSe passive shutter. Proc. SPIE, 6610, 661008(2007).

    [96] L. Wang, J. Wang, J. Yang, X. Wu, D. Sun, S. Yin, H. Jiang, J. Wang, C. Xu. 2.79 µm high peak power LGS electro-optically Q-switched Cr,Er:YSGG laser. Opt. Lett., 38, 2150(2013).

    [97] J. Wang, T. Cheng, L. Wang, J. Yang, D. Sun, S. Yin, X. Wu, H. Jiang. Compensation of strong thermal lensing in an LD side-pumped high-power Er:YSGG laser. Laser Phys. Lett., 12, 105004(2015).

    [98] Z. Qin, G. Xie, J. Zhang, J. Ma, P. Yuan, L. Qian. Continuous-wave and passively Q-switched Er:Y2O3 ceramic laser at 2.7  µm. International J. Opt., 2018, 3153614(2018).

    [99] Y. Zhang, B. Xu, Q. Tian, Z. Luo, H. Xu, Z. Cai, D. Sun, Q. Zhang, P. Liu, X. Xu, J. Zhang. Sub-15-ns passively Q-switched Er:YSGG laser at 2.8 µm with Fe:ZnSe saturable absorber. IEEE Photon. Technol. Lett., 31, 565(2019).

    [100] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077(2009).

    [101] Z. You, Y. Sun, D. Sun, Z. Zhu, Y. Wang, J. Li, C. Tu, J. Xu. High performance of a passively Q-switched mid-infrared laser with Bi2Te3/graphene composite SA. Opt. Lett., 42, 871(2017).

    [102] X. Su, H. Nie, Y. Wang, G. Li, B. Yan, B. Zhang, K. Yang, J. He. Few-layered ReS2 as saturable absorber for 2.8 µm solid state laser. Opt. Lett., 42, 3502(2017).

    [103] J. Liu, H. Huang, F. Zhang, Z. Zhang, J. Liu, H. Zhang, L. Su. Bismuth nanosheets as a Q-switcher for a mid-infrared erbium-doped SrF2 laser. Photon. Res., 6, 762(2018).

    [104] Q. Hao, J. Liu, Z. Zhang, B. Zhang, F. Zhang, J. Yang, J. Liu, L. Su, H. Zhang. Mid-infrared Er:CaF2–SrF2 bulk laser Q-switched by MXene Ti3C2Tx absorber. Appl. Phys. Express, 12, 085506(2019).

    [105] J. Liu, J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, L. Su. Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express, 24, 30289(2016).

    [106] M. Fan, T. Li, S. Zhao, G. Li, H. Ma, X. Gao, C. Kränkel, G. Huber. Watt-level passively Q-switched Er:Lu2O3 laser at 2.84 µm using MoS2. Opt. Lett., 41, 540(2016).

    [107] J. Xu, M. Li, Y. J. L. P. Chen. WS2 passively Q-switched Er:SrF2 laser at ∼3 µm. Laser Phys., 29, 055802(2019).

    [108] Y. Yao, N. Cui, Q. Wang, L. Dong, J. L. He. Highly efficient continuous-wave and ReSe2Q-switched 3 µm dual-wavelength Er:YAP crystal lasers. Opt. Lett., 44, 2839(2019).

    [109] B. Yan, B. Zhang, H. Nie, G. Li, X. Sun, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale, 10, 20171(2018).

    [110] X. Guan, L. Zhan, Z. Zhu, B. Xu, H. Xu, Z. Cai, W. Cai, X. Xu, J. Zhang, J. Xu. Continuous-wave and chemical vapor deposition graphene-based passively Q-switched Er:Y2O3 ceramic lasers at 2.7 µm. Appl. Opt., 57, 371(2018).

    [111] P. Tang, Z. Qin, J. Liu, C. Zhao, G. Xie, S. Wen, L. Qian. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 40, 4855(2015).

    [112] R. I. Woodward, D. D. Hudson, A. Fuerbach, S. D. Jackson. Generation of 70 fs pulses at 2.86 µm from a mid-infrared fiber laser. Opt. Lett., 42, 4893(2017).

    [113] H. Gu, Z. Qin, G. Xie, T. Hai, P. Yuan, J. Ma, L. Qian. Generation of 131 fs mode-locked pulses from 2.8 µm Er:ZBLAN fiber laser. Chin. Opt. Lett., 18, 031402(2020).

    [114] C. Wei, X. Zhu, R. A. Norwood, N. Peyghambarian. Passively continuous-wave mode-locked Er3+-doped ZBLAN fiber laser at 2.8 µm. Opt. Lett., 37, 3849(2012).

    [115] X. Zhu, G. Zhu, C. Wei, L. V. Kotov, J. Wang, M. Tong, R. A. Norwood, N. Peyghambarian. Pulsed fluoride fiber lasers at 3 µm [Invited]. J. Opt. Soc. Am. B, 34, A15(2017).

    [116] H. Luo, J. Yang, J. Li, Y. Liu. Tunable sub-300 fs soliton and switchable dual-wavelength pulse generation from a mode-locked fiber oscillator around 2.8 µm. Opt. Lett., 46, 841(2021).

    [117] J. Machan, R. Kurtz, M. Bass, M. Birnbaum, M. Kokta. Simultaneous, multiple wavelength lasing of (Ho, Nd):Y3Al5O12. Appl. Phys. Lett., 51, 1313(1987).

    [118] A. F. Umyskov, D. Z. Yu, A. I. Zagumennyi, V. O. Vyacheslav, P. A. Studenikin. Cr3+, Yb3+, Ho3+:YSGG crystal laser with a continuously tunable emission wavelength in the range 2.84–3.05 µm. Quantum Electron., 26, 563(1996).

    [119] A. Diening, S. Kuck. Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet. J. Appl. Phys., 87, 4063(2000).

    [120] Z. Wang, B. Zhang, J. He, K. Yang, K. Han, J. Ning, J. Hou, F. Lou. Passively Q-switched mode-locking of Tm:YAP laser based on Cr:ZnS saturable absorber. Appl. Opt., 54, 4333(2015).

    [121] J. Q. Hong, L. H. Zhang, M. Xu, Y. Hang. Activation and deactivation effects to Ho3+ at ∼2.8 µm MIR emission by Yb3+ and Pr3+ ions in YAG crystal. Opt. Mater. Express, 6, 1444(2016).

    [122] H. Zhang, X. Sun, J. Luo, Z. Fang, X. Zhao, M. Cheng, Q. Zhang, D. Sun. Structure, defects, and spectroscopic properties of a Yb,Ho,Pr:YAP laser crystal. J. Alloys Comp., 672, 223(2016).

    [123] J. Hong, L. Zhang, Y. Hang. Enhanced 2.86 µm emission of Ho3+,Pr3+-codoped LaF3 single crystal. Opt. Mater. Express, 7, 1509(2017).

    [124] S. Li, L. Zhang, M. He, G. Chen, Y. Yang, S. Zhang, M. Xu, T. Yan, N. Ye, Y. Hang. Nd3+ as effective sensitizing and deactivating ions for the 2.87 µm lasers in Ho3+ doped LaF3 crystal. J. Lumin., 208, 63(2019).

    [125] S. Wang, J. Zhang, N. Xu, S. Jia, G. Brambilla, P. Wang. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Opt. Lett., 45, 1216(2020).

    [126] D. Anthon, T. Pier. Laser-pumped 3 µm Ho:YAG and Ho:GGG lasers. Advanced Solid State Lasers, MML3(1990).

    [127] A. F. Umyskov, Y. D. Zavartsev, A. I. Zagumennyi, V. V. Osiko, P. A. Studenikin. Efficient 3 µm Cr3+:Yb3+:Ho3+:YSGG crystal laser. Quantum Electron., 26, 771(1996).

    [128] A. V. Lukashev, Y. D. Zavartsev, A. I. Zagumennyi, M. E. Karasev, L. A. Kulevskii, P. P. Pashinin, P. A. Studenikin, V. N. Tranev. Efficient flash lamp pumped YSGG:Cr:Yb:Ho laser at 3 µm. IEEE LEOS Annual Meeting Conference, 914(1999).

    [129] A. Diening, E. A. Möbert, E. Heumann, G. Huber, B. H. T. Chai. Diode-pumped cw lasing of Yb,Ho:KYF4 in the 3 µm spectral range in comparison to Er:KYF4. Laser Phys., 8, 214(1998).

    [130] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 53, 8400208(2017).

    [131] H. Nie, H. Xia, B. Shi, J. Hu, B. Zhang, K. Yang, J. He. High-efficiency watt-level continuous-wave 2.9 µm Ho,Pr:YLF laser. Opt. Lett., 43, 6109(2018).

    [132] H. Nie, B. Shi, H. Xia, J. Hu, B. Zhang, K. Yang, J. L. He. High-repetition-rate kHz electro-optically Q-switched Ho, Pr:YLF 2.9 µm bulk laser. Opt. Express, 26, 33671(2018).

    [133] S. Bowman, W. Rabinovich, A. Bowman, B. Feldman, G. Rosenblatt. 3 µm laser performance of Ho:YAlO3 and Nd, Ho:YAlO3. IEEE J. Quantum Electron., 26, 403(1990).

    [134] S. Bowman, W. Rabinovich, B. Feldman, M. Winings. Tuning the 3 µm Ho:YAlO3 Laser. Advanced Solid State Lasers, MML4(1990).

    [135] H. Nie, P. Zhang, B. Zhang, M. Xu, K. Yang, X. Sun, L. Zhang, Y. Hang, J. He. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+,Pr3+:LiLuF4 bulk laser at 2.95 µm. IEEE J. Sel. Top. Quantum Electron., 24, 1600205(2017).

    [136] Z. Yan, G. Li, T. Li, S. Zhao, K. Yang, S. Zhang, M. Fan, L. Guo, B. Zhang. Passively Q-switched Ho,Pr:LiLuF4 laser at 2.95 µm using MoSe2. IEEE Photon. J., 9, 1506207(2017).

    [137] H. Nie, X. Sun, B. Zhang, B. Yan, G. Li, Y. Wang, J. Liu, B. Shi, S. Liu, J. He. Few-layer TiSe2 as a saturable absorber for nanosecond pulse generation in 2.95 µm bulk laser. Opt. Lett., 43, 3349(2018).

    [138] M. Fan, T. Li, G. Li, S. Zhao, K. Yang, S. Zhang, B. Zhang, J. Xu, C. Kränkel. Passively Q-switched Ho,Pr:LiLuF4 laser with graphitic carbon nitride nanosheet film. Opt. Express, 25, 12796(2017).

    [139] W. Duan, H. Nie, X. Sun, B. Zhang, G. He, Q. Yang, H. Xia, R. Wang, J. Zhan, J. He. Passively Q-switched mid-infrared laser pulse generation with gold nanospheres as a saturable absorber. Opt. Lett., 43, 1179(2018).

    [140] S. Liu, H. Nie, B. Zhang, S. Li, Y. Yan, L. He. Continuous-wave-tunable and passively Q-switched 2.9 µm Ho,Pr:LiLuF4 lasers. Laser Phys. Lett., 16, 015802(2019).

    [141] L. F. Johnson, H. J. Guggenheim. Laser emission at 3 µm from Dy3+ in BaY2F8. Appl. Phys. Lett., 23, 96(1973).

    [142] N. Djeu, V. E. Hartwell, A. A. Kaminskii, A. V. Butashin. Room-temperature 3.4 µm Dy:BaYb2F8 laser. Opt. Lett., 22, 997(1997).

    [143] Y. H. Tsang, A. E. El. Efficient 2.96 µm dysprosium-doped fluoride fibre laser pumped with a Nd: YAG laser operating at 1.3 µm. Opt. Express, 14, 678(2006).

    [144] M. R. Majewski, S. D. Jackson. Highly efficient mid-infrared dysprosium fiber laser. Opt. Lett., 41, 2173(2016).

    [145] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3 µm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 27, 15032(2019).

    [146] H. Luo, Y. Xu, J. Li, Y. Liu. Gain-switched dysprosium fiber laser tunable from 2.8 to 3.1 µm. Opt. Express, 27, 27151(2019).

    [147] Y. Dwivedi, S. B. Rai. Spectroscopic study of Dy3+ and Dy3+/Yb3+ ions co-doped in barium fluoroborate glass. Opt. Mater., 31, 1472(2009).

    [148] P. Zhang, M. Xu, L. Zhang, J. Hong, X. Wang, Y. Wang, G. Chen, Y. Hang. Intense 2.89 µm emission from Dy3+/Yb3+-codoped PbF2 crystal by 970 nm laser diode pumping. Opt. Express, 23, 27786(2015).

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404

    [2] Chao Ning, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li, Fengqi Liu. Interband cascade lasers with short electron injector[J]. Chinese Optics Letters, 2022, 20(2): 022501

    Data from CrossRef

    [1] Longfei Zhang, Yiguang Jiang, Zaiyang Wang, Feng Guan, Yanchao Li, Xinqiang Yuan, Long Zhang. Performance and structure evolution of fluoindinate glass at high temperatures. Journal of the American Ceramic Society, jace.18241(2021).

    Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407
    Download Citation