• Chinese Optics Letters
  • Vol. 19, Issue 9, 091407 (2021)
Hongkun Nie1, Feifei Wang1, Junting Liu1, Kejian Yang1、2, Baitao Zhang1、2、*, and Jingliang He1、2
Author Affiliations
  • 1State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 2Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, China
  • show less
    DOI: 10.3788/COL202119.091407 Cite this Article Set citation alerts
    Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407 Copy Citation Text show less
    (a) Typical emission spectrum[42] and (b) wavelength coverages[19] of Er3+-, Ho3+-, and Dy3+-doped lasers.
    Fig. 1. (a) Typical emission spectrum[42] and (b) wavelength coverages[19] of Er3+-, Ho3+-, and Dy3+-doped lasers.
    (a) Simplified energy-level diagram of Er3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the summary of the room temperature CW output power and slope efficiency of Er-doped crystalline lasers at 2.7–3 µm; (c) the schematic of a diode-side-pumped Er:YSGG slab laser at 2.79 µm[83]; (d) the experimental setup of the LD end-pumped high-power Er:YAP laser[15].
    Fig. 2. (a) Simplified energy-level diagram of Er3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the summary of the room temperature CW output power and slope efficiency of Er-doped crystalline lasers at 2.7–3 µm; (c) the schematic of a diode-side-pumped Er:YSGG slab laser at 2.79 µm[83]; (d) the experimental setup of the LD end-pumped high-power Er:YAP laser[15].
    (a) Experimental setup of high-energy LN EO Q-switched Er:YAG laser[94]; (b) the schematic diagram of the LD arrays side-pumped Er,Pr:GYSGG laser (inset: side-pumped symmetry)[60]; (c) the experimental setup and (d) output characterizations of the Fe:ZnSe passively Q-switched Er:YSGG laser[99].
    Fig. 3. (a) Experimental setup of high-energy LN EO Q-switched Er:YAG laser[94]; (b) the schematic diagram of the LD arrays side-pumped Er,Pr:GYSGG laser (inset: side-pumped symmetry)[60]; (c) the experimental setup and (d) output characterizations of the Fe:ZnSe passively Q-switched Er:YSGG laser[99].
    (a) Simplified energy-level diagram of Ho3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the fluorescence life time “reversion” of Ho:5I6 and Ho:5I7 in Ho,Pr:YLF crystals with doping concentrations of 0.498 at.% and 0.115 at.% for Ho3+ and Pr3+ ions[131]; (c) the output laser power of a Raman laser end-pumped Ho,Pr:YLF (Ho3+: 0.498 at.% and Pr3+: 0.115 at.%) laser[131]; (d) the experimental setup and laser output power of dual-end-pumped EO Q-switched Ho,Pr:YLF laser[132].
    Fig. 4. (a) Simplified energy-level diagram of Ho3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the fluorescence life time “reversion” of Ho:5I6 and Ho:5I7 in Ho,Pr:YLF crystals with doping concentrations of 0.498 at.% and 0.115 at.% for Ho3+ and Pr3+ ions[131]; (c) the output laser power of a Raman laser end-pumped Ho,Pr:YLF (Ho3+: 0.498 at.% and Pr3+: 0.115 at.%) laser[131]; (d) the experimental setup and laser output power of dual-end-pumped EO Q-switched Ho,Pr:YLF laser[132].
    (a) Simplified energy-level diagram of Dy3+-doped gain medium and sensitizer effect of Yb3+ ions; (b) and (c) are the schematic of the actively Q-switched Dy:ZBLAN fiber laser and corresponding laser output characterizations[145].
    Fig. 5. (a) Simplified energy-level diagram of Dy3+-doped gain medium and sensitizer effect of Yb3+ ions; (b) and (c) are the schematic of the actively Q-switched Dy:ZBLAN fiber laser and corresponding laser output characterizations[145].
    Gain MediumEr3+-Doping Concentration (at.%)Output Power (W)Slope Efficiency (%)Emission Wavelength (µm)Ref.
    Er:YAG crystal501.52.94[82]
    Er:GGG crystal300.29192.8[46]
    Er:YSGG crystal300.75322.8[67]
    Er:YGG crystal101.3835.42.82–2.92[84]
    Er:YSGG slab crystal381.8411.22.79[83]
    Er,Pr:GGG300.32415.182.8[57]
    Er,Pr:GYSGG200.28417.42.79[90]
    Er:YLF crystal151.10352.8[91]
    Er:CaF2 crystal52112.75[70]
    Er:SrF2 crystal31.39.22.75[72]
    Er,Pr:CaF2 crystal30.26214.92.803[58]
    Er,Pr:CaF2-SrF2 crystal40.71241.42.73[71]
    Er:Lu2O3 crystal75.90272.9[49]
    Er:Y2O3 ceramic214.00262.7[87]
    Er:Y2O3 ceramic0.2524142.74[86]
    Er3+:Lu2O3 ceramic116.70302.8[88]
    Er:YAP crystal56.90332.9[15]
    Table 1. Laser Performance of CW Er-Doped Solid-State Crystal Lasers
    Gain MediumSAOutput Power (mW)Slope Efficiency (%)Pulse Width (ns)Pulse Repetition Rate (kHz)Peak Power (W)Pulse Energy (µJ)Ref.
    Er:Y2O3 ceramicSESAM22313.5350130.64.91.71[98]
    Er:YSGG crystalFe:ZnSe1875.714.637.04345.85.05[99]
    Er:YSGG crystalBi2Te3/G110243885.141.25[101]
    Er:YSGG crystalReS210427.33241262.56[102]
    Er:SrF2 crystalBi-NSs22613.698056.204.104.02[103]
    Er:CaSrF2 crystalTi3C2Tx28614.081445.57.766.32[104]
    Er:SrF2 crystalBP1807.970277.032.343.3[105]
    Er:Lu2O3 crystalMoS2103017.13351218.523.8[106]
    Er:SrF2 crystalWS242818.26793811.2616.58[107]
    Er:YAP crystalReSe252614.8202.8244.62.210.6[108]
    Er:YSGG crystalTiSe22501607813.92[109]
    Er:Y2O3 crystalGraphene11529644.22.598.77[110]
    Table 2. Laser Performance of Diode-End-Pumped Passively Q-Switched Er3+-Doped Crystalline Lasers
    Pump SourceGain MediumHo3+ Doping Concentration (at.%)Output Power/EnergySlope Efficiency (%)Emission Wavelength (µm)Ref.
    FlashlampHo,Nd:YAG1041 mJ at 2.94 and 3.0110.012 at 2.94 and 3.011 µm1.064, 1.339, 2.94, and 3.011[117]
    1123 nm Q-switched Nd:YAG laserHo:YAG3062.94[126]
    FlashlampHo:YAlO3242 mJ0.053.019[133]
    1.08 µm NdYAlO laserHo:YAlO321 at 2.922.844–3.017[134]
    FlashlampCr,Yb,Ho:YSGG520mJ0.352.84–3.05[127]
    Ti:Al2O3 laser and 970 nm LDYb,Ho:KYF40.511.5 and 2.5 mW1 and 0.32.84[129]
    970 nm LDYb,Ho:YSGG110.5 mJ3.92.9[119]
    1150 nm LDHo,Pr:LLF0.1850.172 mW10.82.95[9]
    1150 nm Raman fiber laserHo,Pr:LLF0.1851.15 W15.52.95[130]
    1150 nm fiber laserHo,Pr:YLF0.4981.27 W28.32.9[131]
    1150 nm Raman fiber laserHo,Pr:YLF0.4981.46 W7.72.95[132]
    Table 3. Flashlamp-Pumped and CW Laser Performance of Ho-Doped 2.7–3 µm MIR Lasers
    Gain MediumQ SwitchOutput Power (mW)Pulse Width (ns)Pulse Repetition Rate (kHz)Peak Power (W)Pulse Energy (µJ)Ref.
    Ho,Pr:LLFg-CN101420932.861.1[138]
    Ho,Pr:LLFBP385194.3158.712.52.4[130]
    Ho,Pr:LLFMonolayer graphene88937.555.71.41.6[9]
    Ho,Pr:LLFMoSe258818.871.051.120.82[136]
    Ho,Pr:LLFAu-NPs268734914.022.95[139]
    Ho,Pr:YLFEO Q switch26825.20.515,900400[132]
    Ho,Pr:LLF1T-TiSe2130160.598.88.21.32[137]
    Ho,Pr:LLFSESAM1603957.2951.120.2[140]
    Table 4. Actively and Passively Q-Switched Laser Performance of 2.7–3 µm Ho-Doped Crystalline Lasers
    Hongkun Nie, Feifei Wang, Junting Liu, Kejian Yang, Baitao Zhang, Jingliang He. Rare-earth ions-doped mid-infrared (2.7–3 µm) bulk lasers: a review [Invited][J]. Chinese Optics Letters, 2021, 19(9): 091407
    Download Citation