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Mid-infrared (MIR) laser sources operating in the 2.7–3 μm spectral region have attracted extensive attention for many
applications due to the unique features of locating at the atmospheric transparency window, corresponding to the
“characteristic fingerprint” spectra of several gas molecules, and strong absorption of water. Over the past two decades,
significant developments have been achieved in 2.7–3 μm MIR lasers benefiting from the sustainable innovations in laser
technology and the great progress in material science. Here, we mainly summarize and review the recent progress of MIR
bulk laser sources based on the rare-earth ions-doped crystals in the 2.7–3 μm spectral region, including Er3�-, Ho3�-, and
Dy3�-doped crystalline lasers. The outlooks and challenges for future development of rare-earth-doped MIR bulk lasers are
also discussed.
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1. Introduction

A coherent laser source emitting mid-infrared (MIR) radiation
in the 2.7–3 μm wavelength band has several unique features,
including (i) locating at the well-known atmospheric transpar-
ency window[1]; (ii) corresponding to the strong rovibrational
absorption lines of various gas molecules[2,3]; (iii) overlapping
the strong absorption peak of water[4]. Based on the above mer-
its, it has recently attracted tremendous attention owing to the
potential applications in remote sensing, laser surgery, gas mon-
itoring and detection, precision spectroscopy measurement,
material processing and countermeasures, etc. Up to now, the
most advanced MIR solid-state laser technologies that are used
for 2.7–3 μm laser generation include but are not limited to
the rare-earth-doped crystalline and fiber lasers[5–21], semicon-
ductor laser diodes (LDs)[22–26], quantum cascade lasers
(QCLs)[27,28], nonlinear optical frequency conversion {optical
difference frequency generation (DFG)[29,30], optical parametric
sources [OPSs, including optical parametric oscillators
(OPOs)[31–33], optical parametric generators (OPGs)[34,35]],
etc.}, and so on.
The GaIn(As)Sb/AlGaAnSb system-based strained multi-

quantum-well LD is regarded as the most established semicon-
ductor laser technology for 2–3 μm MIR laser generation[23,26],
which relies on the inter-band laser transition and depends on

the composition of the selected alloys. However, the Auger effect
can strongly reduce the efficiency when the emitting wavelength
is longer than 2 μm[26,32]. In contrast to semiconductor LDs, the
laser transition in QCLs is in the conduction band, which is
commonly named the inter-sub-band transition. One type of
carrier and a multistage cascade scheme are the two fundamen-
tal features where QCLs differentiate from semiconductor
LDs[32]. The shortest wavelength of QCLs is limited by the con-
duction band offset height between different heterostructure
materials, while there is no fundamental limitation for the
long-wavelength side. For example, the shortest wavelengths
for InP- and GaAs-based QCLs are 3.4 and 8 μm, respectively.
As a consequence, QCLs are more suitable for longer MIR laser
generation. However, the biggest critical issue of QCLs is the
large amount of dissipated heat, which makes it difficult to
achieve continuous-wave (CW) laser operation at room temper-
ature. Compared with semiconductor LDs and QCLs, con-
verting the most mature 1 μm laser to the MIR region
through nonlinear optical frequency conversion is the com-
monly used technique for 2.7–3 μm laser generation, especially
for high-power and high-energy MIR lasers. However, either
DFG or OPSs need high power and a high-beam-quality funda-
mental laser and a nonlinear optical convertor, which make the
system very complex and with high cost. Therefore, researchers

Vol. 19, No. 9 | September 2021

© 2021 Chinese Optics Letters 091407-1 Chinese Optics Letters 19(9), 091407 (2021)

mailto:btzhang@sdu.edu.cn
https://doi.org/10.3788/COL202119.091407


have endeavored to pursue 2.7–3 μmMIR laser sources with the
advantages of being robust and compact, high efficiency, high
beam quality, low cost, being easy to use, etc.
Over the past two decades, benefiting from the great progress

in material science and technology, a lot of MIR laser gain mate-
rials, especially rare-earth-doped crystalline and fiber materials
with excellent optical, thermal, and mechanical properties have
been developed[5–21,36–39]. Thus far, direct laser emissions in the
2.7–3 μm spectral region have become reality[9,16,21,32,40,41] and
thus have the significant advantages of low cost, high efficiency,
simple structure, and low loss. Direct laser emission around 2.7–
3 μm is primarily based on the optical transitions offered by
Er3�-, Ho3�-, and Dy3�-doped gainmaterials. The typical emis-
sion spectrum and wavelength coverages of Er3�-, Ho3�-, and
Dy3�-doped lasers around 3 μm are shown in Fig. 1[19,42].
Nowadays, driven by the new materials and sustainable innova-
tions in laser technology, a lot of crystalline and fiber lasers oper-
ating around 2.7–3 μm have been realized. Compared with fiber
lasers, all solid-state lasers with bulk crystals have the main
advantages of low undesirable nonlinear effects and a largemode
area, whichmake themmore suitable for generating high-energy
and high-peak-power ultrashort pulses. Here, in this work, we
mainly summarize and review the recent progress of MIR bulk
laser sources based on the rare-earth ions-doped crystals in the
2.7–3 μm spectral region, including Er3�-, Ho3�-, and Dy3�-
doped all solid-state crystalline lasers.

2. All Solid-State Crystalline Lasers in the 2.7–3 μm
Spectral Region

At present, the rare-earth ions that can achieve room tempera-
ture MIR laser operation in the 2.7–3 μm spectral region are
mainly Er3�, Ho3�, and Dy3�, among which the Er3� ion is
mostly studied. Nevertheless, the MIR emission spectrum of
the Er3� ion is a line, and the corresponding output wavelength
is relatively short. In contrast, the number of electrons in the 4f
shell of Ho3� and Dy3� ions is even, resulting in the Stark-level
splitting being greatly influenced by the crystal fields. Thus, the
fluorescence spectra of the Ho3� and Dy3� ions-doped crystals

are usually smooth and broadband, which enables the tunable
laser output and also expands the wavelength towards the infra-
red direction.

2.1. Er3+-doped crystalline lasers in the 2.7–3 μm region

Besides the well-known laser transition of 4I13=2 → 4I15=2 emit-
ting wavelength around 1.55 μm, the Er3� ion can also provide
2.7–3 μmMIR emission with the 4I11=2 → 4I13=2 transition. The
simplified energy-level diagram of the Er3�-doped gain medium
is shown in Fig. 2(a). Easy growing and the pumping wavelength
being around ∼970 nm (commercial LD operation wavelength)
are the two fundamental merits that make Er3�-doped crystals
muchmore extensively studied for the 2.7–3 μm laser generation
compared to that of Ho3�- andDy3�- doped crystals. As early as
1967, Robinson and Devor realized the first, to the best of our
knowledge, laser oscillation of an Er3�-doped crystalline MIR
laser at 2.69 μm with a CaF2:ErF3 mixed crystal[43]. However,
for the Er3�:4I11=2 → 4I13=2 transition, there is a so-called self-
terminated effect leading to a population bottleneck issue caused
by the lifetime of the upper laser level (4I11=2) being much
shorter than that of the lower level (4I13=2)

[44,45], which is the
main obstacle preventing the development of Er3�-doped
2.7–3 μm crystalline lasers. Up to now, several approaches have
been developed to solve this detrimental feature. One is increas-
ing the doping concentration of the Er3� ion to generate the
“quenching effect”, which could decrease the lifetime of
Er3�:4I13=2 so as to relieve the self-terminating behavior[11,46–49].
The energy-transfer up-conversion (ETU) process between Er3�

and Er3� ions in highly doped crystals can also effectively
depopulate Er3�:4I13=2 to solve the population bottleneck issue.
But, it should be noticed that it is a double-edged sword because
of the severe thermal effects and the lifetime reduction of the
upper laser level Er3�:4I11=2. Another approach is co-doping
with sensitized ions (typically Yb3�) with the efficient popula-
tion of Er3�:4I11=2 or deactivated ions (typically Pr3�) with effi-
cient depopulation of Er3�:4I13=2 for establishing and sustaining
population inversion, as shown in Fig. 2(a)[50–60]. Besides, the

Fig. 1. (a) Typical emission spectrum[42] and (b) wavelength coverages[19] of Er3+-, Ho3+-, and Dy3+-doped lasers.
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host material is another essential factor for the Er3�:4I11=2 →
4I13=2 transition, which should have low photon energy, high
radiative emission rate, and low absorption in the 2.7–3 μm
band. To date, the oxide [primarily the garnet structure:
Y3Al5O12 (YAG), Gd3Ga5O12 (GGG), Gd3Sc2Ga3O12 (GSGG),
Y3Sc2Ga3O12 (YSGG), etc. and YAlO3 (YAP)][11,46,50,60–67],
fluoride [CaF2, SrF2, LiYF4, LiLuF4 (LLF), etc.]

[15,43,48,55,58,68–74],
and sesquioxide crystals (Sc2O3, Lu2O3, Y2O3, etc.)

[49,75–79] or
ceramics have been proved to be the promising and most spread
host materials for Er3�-doped 2.7–3 μm crystalline lasers by
considering the thermal conductivity, opto-mechanical proper-
ties, photon energy, etc. Moreover, the cascading laser operation
of 4I13=2 → 4I15=2 and 4I11=2 → 4I13=2 transitions is another way

to suppress the saturation of the 4I11=2 → 4I13=2 transition. Such
cascade oscillation was demonstrated for instance in Er:YLiF4
(YLF)Q-switched lasers and Er-doped fluoride fiber lasers[80,81].
After the first, to the best of our knowledge, realization of an

Er3�:CaF2:ErF3 mixed crystal operating at 2.69 μm in 1969, effi-
cient operations both in the CW and pulsed regimes with Er3�-
doped crystals have been demonstrated with the development of
the crystal design and growth and the innovations of the laser
technology. Figure 2(b) shows the room temperature CW out-
put power and the corresponding slope efficiency obtained with
Er3� ions-doped crystalline lasers in the 2.7–3 μm region.
In 1992, Dinerman et al. reported the first, to the best of our

knowledge, CW operation of monolithic Er:YAG, Er:GGG,
and Er:YSGG lasers near 3 μm with output powers of 143,
155, and 190 mW[61], which were further promoted to 171,
293, and 511 mW in 1994[46]. In 2010, Sousa et al. realized a
maximum CW output power of 1.5 W with an Er:YAG crystal
at 2.94 μm[82]. In 2014, You reported a diode-end-pumped MIR
multi-wavelength Er,Pr:GGG laser with CW output power of
324 mW[57]. In 2015, Shen et al. studied the CW laser perfor-
mance of an LD side-pumped Er:YSGG slab at 2.79 μm, in which
themaximum output power of 1.84Wwas obtained with a slope
efficiency of 10.2%[83]. The corresponding experiment setup is
shown in Fig. 2(c), in which an Er:YSGG slab with dimensions
of 1mm × 2mm × 12mm was dual-side-pumped by 970 nm
LDs. In 2018, Yu et al. realized a high-efficiency Er:YGG laser
at 2.82–2.92 μm with output power of 1.38 W and slope effi-
ciency of 35.4%, approaching the theoretical quantum limits[84].
For fluoride crystals, in 2006, Basiev presented a continuously
tunable CW laser operation near 2.75 μm of diode-pumped
Er:SrF2 and Er:CaF2 crystals with output powers of 0.4 and
2W[70]. In 2018, Švejkar et al. promoted the Er:SrF2 laser output
power up to 1.3 W with a slope efficiency of 9.2% and tuning
range of 123 nm[72]. Liu et al. realized an efficient CW laser per-
formance of a diode-end-pumped Er:CaF2-SrF2 crystal with an
output power of 712 mW and a slope efficiency of 41.4%[71].
However, as shown in Fig. 2(b), the output powers of the garnet
structure and fluoride-crystals-based Er3�-doped crystal lasers

Fig. 2. (a) Simplified energy-level diagram of Er3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the summary of the room
temperature CW output power and slope efficiency of Er-doped crystalline lasers at 2.7–3 μm; (c) the schematic of a diode-side-pumped Er:YSGG slab laser at
2.79 μm[83]; (d) the experimental setup of the LD end-pumped high-power Er:YAP laser[15].
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in the 2.7–3 μm region are limited to ∼2W, mainly because of
the severe thermal effect. Benefiting from the high thermal con-
ductivity and low phonon energy, sesquioxide crystals have been
proved to be more suitable for high-power MIR laser operation.
In 2012, Li et al. presented a 5.9 W CW output power with
Er:Lu2O3 as the gain medium and a slope efficiency of
27%[49]. Besides sesquioxide crystals, high-quality polycrystal-
line transparent sesquioxide ceramics also show huge opportu-
nities for high-power 3 μm lasers because of the advantages
compared to single crystals, such as excellent mechanical
strength and easy fabrication process[76,77,79,85–87]. In 2011, a
2.8 μm Er:Y2O3 ceramic laser with an output power of 14 W
was reported with a cooling temperature of 77 K[87], which
was promoted to be 24 W in 2016[86]. Very recently, Yao et al.
demonstrated an Er:Lu2O3 ceramic laser at 2845 nm with 6.7 W
output power and > 30% slope efficiency, which is the highest
output power ever achieved from Er-doped sesquioxide ceram-
ics at room temperature[88]. Besides, YAP is another attractive
host candidate for high-power Er3�-doped crystal lasers owing

to low phonon energy and excellent thermal properties. In 2019,
Yasuhara et al. presented a 1.17 W CW Er:YAP crystal laser
operating at 2.9 μm with a slope efficiency of 29%[89].
Subsequently, due to the anisotropic thermal properties, a b-
cut Er:YAP crystal was chosen, and the output power was pro-
moted to 6.9W [as shown in Fig. 2(d)], which is the highest CW
output power generated from Er-doped solid-state lasers at
room temperature[15]. Table 1 summarizes the important results
of CW Er-doped solid-state lasers.
In the pulsed regime, flash-side pumping is an effective and

commonly used architecture to produce high-energy 2.7–
3 μm laser pulses at low repetition rate. As early as 1990, pulse
energy as high as 400 mJ was obtained with an Er:YAG crystal
under the pump energy of 92 J[92]. However, the pulse width was
always in the scale of hundreds of microseconds or even milli-
seconds without any cavity Q-factor modulation. Combining
with the active or passive Q-switching technique, nanosecond
2.7–3 μmpulsed lasers could be achieved. In 2004, a pulse energy
of 137mJ with a pulse width of∼90 ns and repetition rate of 3Hz
was obtained from a single xenon flashlamp-pumped, actively
Q-switched Er:YAG laser at 2.94 μm[93]. In 2005, Koranda et al.
reported a 60 ns laser pulse with energy of 60 mJ generated to
form a LiNbO3 (LN) electro-optically (EO) Q-switched 2.94 μm
Er:YAG laser[94], as shown in Fig. 3(a). An Er:YAG crystal with
dimensions of Φ4mm �diameter� × 89mm �length� was placed
along the Xe flashlamp in a Linear Matrix Inequality diffuse
ceramic cavity, which was the key part of the laser oscillator.
The LN crystal with both faces cut under a Brewster angle acted
as a Pockels cell and optical polarizers. The specially designed
delay circuit was another key element to provide precise switch-
ing of the EO shutter at the time when the population inversion
inside the Er:YAG crystal reached the maximum value. In 2007,
a giant pulse width of 35 ns and an output energy up to 30 mJ
were obtained from a Fe2�:ZnSe passively Q-switched Er:YAG
laser at 2.94 μm[95]. In 2013,Wang et al. realized a 2.79 μmhigh-
peak-power langasite (LGS) EO Q-switched Cr,Er:YSGG laser
with pulse energy of 216 mJ and pulse duration of 14.36 ns[96].
For the flash-pumping laser system, it is difficult to achieve high
pulse energy at a high repetition rate due to the low operation
repetition rate, low conversion efficiency, and strong thermal
effect.
Compared to flash pumping, pulsed LD pumping has the

merits of high efficiency, better beam quality, and high repeti-
tion rate. Hence, an efficient and compact diode-laser-pumped
2.94 μm Er:YAG laser with energy up to 9 mJ was realized in
2010, consequently making the hermetically sealed windowed
package[82]. In 2015, a pulse energy of 562 mJ at 16 Hz was
obtained from an LD side-pumped 2.79 μm Er:YSGG laser[97].
In 2017, an output peak power of 1.2 W was obtained by a
quasi-CW LD end-pumped Er:Lu2O3 laser

[77]. In 2018, a maxi-
mum output power of 8.86 W was achieved at 125 Hz with a
slope efficiency of 14.8% from an LD-side-pumped Er,Pr:
Gd1.17YSc1.284Ga3O12 laser

[60]. As shown in Fig. 3(b), the main
part was the diode-side-pumped Er,Pr:GYSGG module, in
which three LD arrays were symmetrically placed with intervals

Table 1. Laser Performance of CW Er-Doped Solid-State Crystal Lasers.

Gain Medium

Er3+-Doping
Concentration

(at.%)

Output
Power
(W)

Slope
Efficiency

(%)

Emission
Wavelength

(μm) Ref.

Er:YAG crystal 50 1.5 – 2.94 [82]

Er:GGG crystal 30 0.29 19 2.8 [46]

Er:YSGG crystal 30 0.75 32 2.8 [67]

Er:YGG crystal 10 1.38 35.4 2.82–2.92 [84]

Er:YSGG slab
crystal

38 1.84 11.2 2.79 [83]

Er,Pr:GGG 30 0.324 15.18 2.8 [57]

Er,Pr:GYSGG 20 0.284 17.4 2.79 [90]

Er:YLF crystal 15 1.10 35 2.8 [91]

Er:CaF2 crystal 5 2 11 2.75 [70]

Er:SrF2 crystal 3 1.3 9.2 2.75 [72]

Er,Pr:CaF2 crystal 3 0.262 14.9 2.803 [58]

Er,Pr:CaF2-SrF2
crystal

4 0.712 41.4 2.73 [71]

Er:Lu2O3 crystal 7 5.90 27 2.9 [49]

Er:Y2O3 ceramic 2 14.00 26 2.7 [87]

Er:Y2O3 ceramic 0.25 24 14 2.74 [86]

Er3� :Lu2O3
ceramic

11 6.70 30 2.8 [88]

Er:YAP crystal 5 6.90 33 2.9 [15]
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of 120° to alleviate the thermal effect. For CW LD pumping,
pulsed Er-doped laser generation at 2.7–3 μm is mainly focused
on the passive Q-switching technique. The typical traditional
saturable absorber (SA), semiconductor SA mirror (SESAM),
and Fe:ZnSe have been applied in Er-doped crystal laser resona-
tors to generate nanosecond pulsed lasers at 2.7–3 μm. In 2018,
Qin et al. realized a passively Q-switched Er:Y2O3 ceramic laser
by using SESAM as the SA, generating a pulse energy of 1.7 μJ
and a pulse duration of 350 ns at 2709.3 nm[98]. In 2019, Zhang
et al. reported a sub-15-ns passively Q-switched Er:YSGG laser
at 2.8 μm with Fe:ZnSe as the SA, in which a pulse energy of
5.05 μJ and a pulse width of 14.6 ns were obtained[99]. The sche-
matic of the experimental setup and the passive Q-switching
output characters are shown in Figs. 3(c) and 3(d). The Fe:
ZnSe crystals with a doping concentration of 0.18% and thick-
ness of 0.6 and 0.8 mm (corresponding to the initial transmis-
sions of 55.4% and 50.2%) were used as the SAs. In order to get
the short pulse width, the output coupler was directly attached to
the rear surface of the Fe:ZnSe crystal to form the “microchip”
structure and compress the cavity length to be approximately
equal to the length of the laser crystal and SA (∼5.6 and
5.8 mm). Nevertheless, SESAM and Fe:ZnSe suffer several draw-
backs, including complex and costly fabrication process, narrow

saturable absorption band, and slow recovery time, which sig-
nificantly limit their applications. Since the first, to the best of
our knowledge, demonstration of a graphene SA in 2009[100],
studies on 2D materials-based SAs have experienced a boom
in development due to the advantages of fast relaxation time,
proper modulation depth and saturation intensity, broad
operation wavelength band, and easy fabrication. In 2017, the
passively Q-switched Er:YSGG lasers at ∼2.8 μm were demon-
strated by utilizing the composite Bi2Te3=graphene and ReS2
as SAs, generating the pulse width of 243 and 324 ns, respec-
tively[101,102]. By using bismuth nanosheets (Bi-NSs), MXene
Ti3C2Tx, and black phosphorus (BP), Liu et al. realized Q-
switched Er3�-doped lasers with pulse widths of 980, 814,
and 702 ns, respectively[103–105]. Besides, as the typical materials
of transition metal dichalcogenides (TMDs), MoS2, WS2, ReSe2,
and TiSe2 were also applied in MIR passively Q-switched lasers
to generate the shortest pulse durations of 335, 679, 202, and
160 ns, respectively[106–109]. The performances of diode-
end-pumped passively Q-switched Er-doped crystalline lasers
are summarized in Table 2.
Besides the Q-switched pulsed lasers, the mode-locked Er-

doped ultrafast lasers are of great interest for some practical
applications, owing to the ultrashort pulse width and high peak

Fig. 3. (a) Experimental setup of high-energy LN EO Q-switched Er:YAG laser[94]; (b) the schematic diagram of the LD arrays side-pumped Er,Pr:GYSGG laser (inset:
side-pumped symmetry)[60]; (c) the experimental setup and (d) output characterizations of the Fe:ZnSe passively Q-switched Er:YSGG laser[99].
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power. Picosecond or even femtosecond CW mode-locked
Er-doped fiber lasers have been extensively studied and real-
ized[111–116], while only Q-switched mode-locked operation
was obtained for Er-doped crystalline lasers because the intra-
cavity pulse energy could not be high enough to reach the stable
CW mode-locking regime caused by the relatively low gain and
absorption of H2O. In 2018, Xue et al. realized a stable Q-
switched mode-locked 2.7 μm Er:Y2O3 ceramic laser with
SESAM, generating an average output power of ∼92mW with
100%modulation depth and 130MHz repetition rate embedded
in the Q-switched envelope of ∼1.2 μs width[85]. Liu et al.
reported passively Q-switched mode-locked Er:CaF2-SrF2 lasers
with the repetition rate of 136.3 MHz inside the Q-switched
envelope and a pulse width estimated to be 1.78 ns[71].

2.2 Ho3+-doped crystalline lasers in the 2.7–3 μm region

The Ho3� ion is another promising candidate for generating
2.7–3 μm lasers related to the 5I6 → 5I7 transition, as shown
in Fig. 4(a). However, Ho-doped crystalline lasers emitting in
the 2.7–3 μm spectral region are much less studied compared
to those emitting around ∼2.1 μm and Er3�-doped lasers. The
main limiting issues are the pumping wavelength around
∼1150 nm (not the commercial emitting wavelength of a LD)
and the same self-terminated effect occurring with the
Ho3�:5I6 → 5I7 transition (Ho3�:5I7 has a longer lifetime than
Ho3�:5I6, resulting in the lower laser level during oscillation).
The same as the Er3�:4I11=2 → 4I13=2 transition, the saturation
of the Ho3�:5I6 → 5I7 transition can also be suppressed by cas-
cade lasing (Ho3�:5I6 → 5I7 and Ho3�:5I7 → 5I8 transitions) or

co-doping with sensitized (typically Yb3� ions) or deactivated
ions (typically Nd3� and Pr3� ions)[5,9,39,117–125]. The hostmate-
rials are also focused on the garnet structure and fluoride.
In the beginning, Ho-doped crystalline lasers operating in the

2.7–3 μm spectral region were mainly pumped by a flashlamp or
pulsed laser due to lack of pumping source and the population
bottleneck effect. In 1987, Machan et al. realized the simultane-
ous lasing of Nd3� and Ho3� ions at 1.064, 1.339, 2.94, and
3.011 μm with a flashlamp-pumped Ho:Nd:YAG crystal, indi-
cating that the strong ion-ion interaction could produce efficient
3 μm lasing[117].
In 1990, Anthon reported the first laser (Q-switched Nd:YAG

laser operating at 1123 nm) pumped 3 μm Ho:YAG and Ho:
GGG laser[126]. In 1996, Umyskov et al. demonstrated a flash-
lamp-pumped Cr3�:Yb3�:Ho3�:YSGG laser with the emission
wavelength continuously tuned from 2.84 to 3.05 μm, in which
co-doping with Cr3� and Yb3� ions could efficiently increase
the absorption of the pump light by the energy transfer of
Cr3� → Yb3� → Ho3�[118,127]. In 2002, Lukashev demon-
strated a flashlamp-pumped Cr,Yb,Ho:YSGG laser at 3 μmwith
an output energy of 62 mJ[128].
In 1998, Diening et al. realized 11 and 2.5 mW CW laser out-

put at 2.84 μm with an Yb3�:Ho3�:KYF4 crystal pumped by a
Ti:Al2O3 laser and LD, respectively[129]. In 2000, they reported
another lasing of an Yb,Ho:YAG crystal around 1.2 and 3 μm, in
which the quasi-CW laser emission at 2844 nm with pulse
energy up to 10.5 mJ was obtained[119]. In 2017, our group real-
ized a 1150 nm LD end-pumped Ho,Pr:LLF laser with CW out-
put power of 172 mW and a slope efficiency of 10.8%[9]. Then,
by using a high-power and high-beam-quality 1150 nm Raman

Table 2. Laser Performance of Diode-End-Pumped Passively Q-Switched Er3�-Doped Crystalline Lasers.

Gain Medium SA
Output

Power (mW)
Slope

Efficiency (%)
Pulse

Width (ns)
Pulse Repetition

Rate (kHz)
Peak

Power (W)
Pulse

Energy (μJ) Ref.

Er:Y2O3 ceramic SESAM 223 13.5 350 130.6 4.9 1.71 [98]

Er:YSGG crystal Fe:ZnSe 187 5.7 14.6 37.04 345.8 5.05 [99]

Er:YSGG crystal Bi2Te3=G 110 – 243 88 5.14 1.25 [101]

Er:YSGG crystal ReS2 104 27.3 324 126 2.56 – [102]

Er:SrF2 crystal Bi-NSs 226 13.6 980 56.20 4.10 4.02 [103]

Er:CaSrF2 crystal Ti3C2Tx 286 14.0 814 45.5 7.76 6.32 [104]

Er:SrF2 crystal BP 180 7.9 702 77.03 2.34 3.3 [105]

Er:Lu2O3 crystal MoS2 1030 17.1 335 121 8.5 23.8 [106]

Er:SrF2 crystal WS2 428 18.2 679 38 11.26 16.58 [107]

Er:YAP crystal ReSe2 526 14.8 202.8 244.6 2.2 10.6 [108]

Er:YSGG crystal TiSe2 250 – 160 78 13.92 – [109]

Er:Y2O3 crystal Graphene 115 – 296 44.2 2.59 8.77 [110]
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laser as the pump source, the CWoutput power was promoted to
1.15Wwith a slope efficiency of 15.5%[130]. In 2019, by optimiz-
ing the doping concentration of Ho3� and Pr3� ions in the Ho,
Pr:YLF crystal, the lifetime of Ho3�:5I6 was designed to be larger
than that of Ho3�:5I7, as shown in Fig. 3(b). Thus, as high as
1.27 W CW laser output with a slope efficiency of 28.3% was
obtained[131], as shown in Fig. 4(c). By using the dual-end-
pumping configuration, a maximum output power of 1.46 W
was obtained with a slope efficiency of 7.7%. To the best of
our knowledge, it is the largest CW output power ever obtained
with Ho-doped crystalline lasers[132]. Table 3 summarizes the
flashlamp-pumped and CW laser performance of Ho-doped
MIR lasers in the 2.7–3 μm region.
In the pulsed regime, besides themicrosecond pulse generated

by pumping with the flashlamp and pulsed LD, nanosecond
pulses were obtained with the active and passive Q-switching
techniques. For passive Q-switching operation, SAs are mainly
focused on low-dimensional materials. In 2017, our group real-
ized a 2.95 μm diode-end-pumped passively Q-switched Ho,Pr:
LLF laser with graphene as an SA, generating a maximum aver-
age output power of 88 mW with pulse width of 937.5 ns and
repetition rate of 55.7 kHz[9]. Then, by using BP as the SA
and a Raman fiber laser as the pump source, a pulse width of
194.3 ns with a repetition rate of 158.7 kHz and average output
power of 385 mW was obtained[135]. With other low-dimen-
sional materials as SAs, such as 2D TMDs (MoSe2, TiSe2,
etc.), graphitic carbon nitride (g-CN), and gold nanospheres,
passively Q-switched laser operation with the pulse widths of

731.5, 160.5, 420, and 743 ns was obtained[136–139]. With the
SESAM as the SA, Liu realized a passively Q-switched Ho,Pr:
LLF laser at 2.9 μmwith a pulse duration of 395 ns and repetition
rate of 7.29 kHz[140]. For active Q-switching operation, a high-
repetition-rate (compared to flashlamp pumping) kilohertz
(kHz) actively Q-switched Ho,Pr:YLF laser at 2.9 μm was real-
ized with LN as the electro-optical Q switch, in which the short-
est pulse width of 25.2 ns was obtained with the repetition rate of
500 Hz and single pulse energy of 0.4 mJ[132].
The corresponding schematic experimental setup and the

relationship between the output power and incident pump
power are shown in Figs. 4(d) and 4(e). Table 4 summarizes
the actively and passively Q-switched laser performance of
Ho-doped crystalline lasers in the 2.7–3 μm region.

2.3. Dy3+-doped all solid-state crystalline lasers in the
2.7–3 μm spectral region

The Dy3� ion is also a most promising and efficient candidate
for emitting MIR laser wavelengths around ∼3 μm based on its
energy-level structure with the Dy3�:6H13=2 → 2H15=2 transi-
tion. The study of Dy-doped MIR lasers is much less than that
of Er3� and Ho3� ions, basically because of the lack of high-
quality crystals and pump sources. Figure 5(a) shows the simpli-
fied energy-level diagram of the Dy3� ion. The absorption
bands of the Dy3� ion are located in the near-infrared
region (around 1.1, 1.3, and 1.7 μm). Same as the Er3� and
Ho3� ions, the possibility of realizing laser emission from the

Fig. 4. (a) Simplified energy-level diagram of Ho3+-doped gain medium and sensitizer and deactivated effect of Yb3+ and Pr3+ ions; (b) the fluorescence life time
“reversion” of Ho:5I6 and Ho:

5I7 in Ho,Pr:YLF crystals with doping concentrations of 0.498 at.% and 0.115 at.% for Ho3+ and Pr3+ ions[131]; (c) the output laser power of a
Raman laser end-pumped Ho,Pr:YLF (Ho3+: 0.498 at.% and Pr3+: 0.115 at.%) laser[131]; (d) the experimental setup and laser output power of dual-end-pumped EO
Q-switched Ho,Pr:YLF laser[132].
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Dy3�:6H13=2 → 2H15=2 transition around ∼3 μm depends on the
host crystal material choice, which should possess low photon
energy and weak ion to crystal lattice orbital coupling and
therefore can efficiently decrease corresponding non-radiative
losses and increase the quantum efficiency. To date, the
Dy3�:6H13=2 → 2H15=2 transition has been obtained in fluoride
crystals, such as Dy:BaYb2F8 and Dy:BaY2F8. In 1973, Johnson
et al. demonstrated a flashlamp-pumped Dy:BaY2F8 laser oper-
ating at 3.022 μm[141]. In 1982, a Dy3�:BaYb2F8 MIR laser at
3.02 μm pumped by a 1.06 μm Nd:YAG laser was demon-
strated[142]. In 1997, Djeu et al. realized a room temperature
Dy3�:BaYb2F8 laser at 3.4 μm pumped by a pulsed 1.3 μm
Nd:YAG laser[142]. Unfortunately, there are no reports about

CW Dy3�-doped crystalline lasers. But, for the fiber laser,
Jackson has realized room temperature 2.9 μm CW laser emis-
sion with output power of 0.275 W and slope efficiency of 4.5%
from a 1100 nm fiber-laser-pumped Dy:ZBLAN fiber in
2003[18]. In 2006, they realized a CWDy:ZBLAN fiber laser with
a maximum output power of 180 mW and a slope efficiency of
20%, in which the pump source was an ∼1.3 μm Nd:YAG
laser[143]. In 2016, they reported a high-efficiency 3.04 μm
Dy:ZBLAN fiber laser with a record slope efficiency of 51%
pumped by a 2.8 μm Er:ZBLAN laser[144]. Moreover, they also
realized the acousto-optically and passively Q-switched Dy:
ZBLAN fiber laser with the central wavelength tunable from
2.97 to 3.23 μm[145]. The actively Q-switched Dy:ZBLAN fiber

Table 3. Flashlamp-Pumped and CW Laser Performance of Ho-Doped 2.7–3 μm MIR Lasers.

Pump Source Gain Medium
Ho3+ Doping

Concentration (at.%)
Output

Power/Energy
Slope

Efficiency (%)
Emission

Wavelength (μm) Ref.

Flashlamp Ho,Nd:YAG 10 41 mJ at 2.94
and 3.011

0.012 at 2.94 and
3.011 μm

1.064, 1.339, 2.94,
and 3.011

[117]

1123 nm Q-switched Nd:YAG laser Ho:YAG 30 – 6 2.94 [126]

Flashlamp Ho:YAlO3 2 42 mJ 0.05 3.019 [133]

1.08 μm NdYAlO laser Ho:YAlO3 2 – 1 at 2.92 2.844–3.017 [134]

Flashlamp Cr,Yb,Ho:YSGG – ∼520mJ ∼0.35 2.84–3.05 [127]

Ti:Al2O3 laser and 970 nm LD Yb,Ho:KYF4 0.5 11.5 and 2.5 mW 1 and 0.3 2.84 [129]

970 nm LD Yb,Ho:YSGG 1 10.5 mJ 3.9 2.9 [119]

1150 nm LD Ho,Pr:LLF 0.185 0.172 mW 10.8 2.95 [9]

1150 nm Raman fiber laser Ho,Pr:LLF 0.185 1.15 W 15.5 2.95 [130]

1150 nm fiber laser Ho,Pr:YLF 0.498 1.27 W 28.3 2.9 [131]

1150 nm Raman fiber laser Ho,Pr:YLF 0.498 1.46 W 7.7 2.95 [132]

Table 4. Actively and Passively Q-Switched Laser Performance of 2.7–3 μm Ho-Doped Crystalline Lasers.

Gain Medium Q Switch Output Power (mW) Pulse Width (ns) Pulse Repetition Rate (kHz) Peak Power (W) Pulse Energy (μJ) Ref.

Ho,Pr:LLF g-CN 101 420 93 2.86 1.1 [138]

Ho,Pr:LLF BP 385 194.3 158.7 12.5 2.4 [130]

Ho,Pr:LLF Monolayer graphene 88 937.5 55.7 1.4 1.6 [9]

Ho,Pr:LLF MoSe2 58 818.8 71.05 1.12 0.82 [136]

Ho,Pr:LLF Au-NPs 268 734 91 4.02 2.95 [139]

Ho,Pr:YLF EO Q switch 268 25.2 0.5 15,900 400 [132]

Ho,Pr:LLF 1 T-TiSe2 130 160.5 98.8 8.2 1.32 [137]

Ho,Pr:LLF SESAM 160 395 7.29 51.1 20.2 [140]
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laser schematic is shown in Fig. 5(b), where the acousto-optic
tunable filter (AOTF) comprises an anisotropic TeO2 crystal
in “slow shear operation.” The corresponding actively Q-
switched laser characterization with 450 mW pump power is
shown in Fig. 5(c). In 2019, Luo et al. realized a gain-switched
Dy3�-doped ZBLAN fiber laser around 3 μm by using an
actively Q-switched Yb3�-doped fiber laser at 1.1 μm as the
pump source, yielding a repetition rate of 80 kHz and a pulse
width of 300 ns[146].
However, it is a real drawback for establishing a compact MIR

laser because of the pumping wavelength not corresponding to
any commercially available high-power LDs. Therefore,
researchers try to study the sensitized ions that can transfer
pumping energy to the Dy3� ion to allow optical pumping with
commercially available LDs. Yb3� ions have been proved to be
themost efficient sensitized ions for Dy3� ions-doped 3 μmMIR
laser emission with energy transformation from Yb3�:2F5=2 to
Dy3�:6H5=2, which enables it to be pumped by the commercial
970 nmLD[147,148]. The simplified energy-level diagram of Yb3�,
Dy3� co-doped crystals is shown in Fig. 5(b). In 2015, Zhang
et.al presented the successful growth of a Yb3�, Dy3�:PbF2 crys-
tal, in which the energy-transfer efficiency from Yb3� to Dy3�

was as high as �97.7 ± 0.3�%. In addition, this crystal possesses
long fluorescence lifetime of 15.4 ms and high quantum effi-
ciency of 95%[148].

3. Challenges and Outlook

Expanding the laser wavelength to the MIR region is one of the
most important developing trends of laser technology. To date,
laser sources with directly emitting wavelengths at 2.7–3 μm are
mainly based on Er3�, Ho3�, and Dy3� rare-earth ions-doped
gain media, in which Er3� ions are mostly studied, Ho3� ions
take second place, and Dy3� ions are the least studied.
Compared to the rare-earth-doped fiber lasers, the rare-earth-
doped crystalline lasers experience a relatively slow development

mainly because of the lack of high-quality laser crystals. But, the
solid-state crystalline lasers are compact and efficient all solid-
state coherent laser sources with the merits of low undesirable
nonlinear effects and large mode area and therefore have great
advantages in producing high-energy and high-peak-power
ultrafast lasers. In this review, we mainly summarize the
state-of-the-art developments of all solid-state MIR crystalline
lasers in the 2.7–3 μm spectral region based on Er3�, Ho3�,
and Dy3�-doped crystals. However, there are still several chal-
lenges, and a series of potential studies need to be further pur-
sued in the future.
First, the host material selection and the preparation of the

high-quality crystals are the basis for high-power and high-effi-
ciency solid-state MIR crystalline lasers in the 2.7–3 μm region.
The longer the emitting wavelength, the narrower the bandgap
between the upper and lower laser level, which, thus, results in
the larger non-radiative transition loss. Therefore, for MIR laser
emission, the host material should have low phonon energy to
reduce the probability of non-radiative transitions. In addition,
the hostmaterials should have large thermal conductivity tomit-
igate the relatively heavy thermal effect of the MIR crystalline
lasers. The damage threshold is another important issue for
high-power and high-energy laser operation.
Second, the selection of sensitized and deactivated ions and

the doping concentration are also important for rare-earth-
doped crystalline lasers at 2.7–3 μm. For Er3� and Ho3�

ions-doped crystals, the deactivated ions are important for solv-
ing the “self-terminated” bottleneck to realize the high-
efficiency laser operation. For Ho3� and Dy3� ions-doped
crystals, the sensitized ions are important for selecting the com-
mercial LD as the pump source. Besides, the doping concentra-
tions of both excited and sensitized or deactivated ions should be
further optimized.
Third, cascade laser operation is very attractive for multi-

wavelength MIR laser generation. Based on the energy-level dia-
gram of Er3�, Ho3�, and Dy3� ions, the cascade laser operation
not only provides a multi-wavelength MIR laser source, but also

Fig. 5. (a) Simplified energy-level diagram of Dy3+-doped gain medium and sensitizer effect of Yb3+ ions; (b) and (c) are the schematic of the actively Q-switched
Dy:ZBLAN fiber laser and corresponding laser output characterizations[145].
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enhances the 2.7–3 μm laser generation. The cascade laser oper-
ation of Er3� and Ho3� ions-doped fiber lasers has been real-
ized, while it still remains a big challenge for crystalline lasers.
Fourth, mode-locked laser operation is another challenge for

rare-earth-doped crystalline lasers at 2.7–3 μm. The mode-
locked laser operation in the near-infrared (1.0, 1.3, 1.5 μm)
andMIR (2.0, 2.4 μm) regions has beenwidely studied, and pico-
second or even femtosecond pulses have been generated. Due to
the lack of suitable SAs and the absorption of H2O, it is very
difficult to achieve the mode-locking operation of rare-earth-
doped crystalline lasers at 2.7–3 μm. However, with the innova-
tions of ultrafast laser technology and material science, it is
something to look forward to and can be widely applied in
the fields of strong field physics, optical frequency comb, ultra-
fast spectroscopy and microimaging, etc.
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