• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1700002 (2022)
Lingyi Zhao1, Ruiqin Yang1、*, and Weiping Cai2
Author Affiliations
  • 1School of Criminal Investigation, People's Public Security University of China, Beijing 100038, China
  • 2Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    DOI: 10.3788/LOP202259.1700002 Cite this Article Set citation alerts
    Lingyi Zhao, Ruiqin Yang, Weiping Cai. Application of Surface-Enhanced Raman Spectroscopy in the Detection of Classical Opioids[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700002 Copy Citation Text show less
    References

    [1] Kwon N J, Han E. A review of drug abuse in recently reported cases of driving under the influence of drugs (DUID) in Asia, USA, and Europe[J]. Forensic Science International, 302, 109854(2019).

    [2] Simonsen K W, Kriikku P, Thelander G et al. Fatal poisoning in drug addicts in the Nordic countries in 2017[J]. Forensic Science International, 313, 110343(2020).

    [3] Li F, Liu J C, Yip P S F et al. Mortalities of methamphetamine, opioid, and ketamine abusers in Shanghai and Wuhan, China[J]. Forensic Science International, 306, 110093(2020).

    [4] Liao L C[M]. Forensic toxicological analysis(2016).

    [5] Wang D. Application of hollow fiber liquid-phase microextraction for analysis of opiates drugs[D](2017).

    [6] Dong R L. Study of the detection of drugs on site using surface-enhanced Raman spectroscopy technology[D](2014).

    [7] Yu B R, Ge M H, Li P et al. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: towards a practical sensor[J]. Talanta, 191, 1-10(2019).

    [8] Muehlethaler C, Leona M, Lombardi J R. Review of surface enhanced Raman scattering applications in forensic science[J]. Analytical Chemistry, 88, 152-169(2016).

    [9] Lei F, Wang Y C, Sun Q R et al. Research progress on surface-enhanced Raman spectroscopy in forensic science[J]. Chinese Journal of Forensic Sciences, 56-60(2019).

    [10] Neng J, Zhang Q, Sun P L. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food[J]. Biosensors and Bioelectronics, 167, 112480(2020).

    [11] Yang D H, Zhang L L, Zhu C. Application of SERS technology in the detection of harmful chemical residues in agricultural products[J]. Spectroscopy and Spectral Analysis, 40, 3048-3055(2020).

    [12] Jiang L, Hassan M M, Ali S et al. Evolving trends in SERS-based techniques for food quality and safety: a review[J]. Trends in Food Science & Technology, 112, 225-240(2021).

    [13] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [14] Gao J. Application of plasmon-enhanced Raman spectroscopy in the detection of chemical warfare agents and related compounds[D](2014).

    [15] Yu Y, Xiao T H, Wu Y Z et al. Roadmap for single-molecule surface-enhanced Raman spectroscopy[J]. Advanced Photonics, 2, 014002(2020).

    [16] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).

    [17] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84, 1-20(1977).

    [18] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode[J]. Journal of the American Chemical Society, 99, 5215-5217(1977).

    [19] Le Ru E C, Blackie E, Meyer M et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. The Journal of Physical Chemistry C, 111, 13794-13803(2007).

    [20] Chen J, Qin G W, Shen W et al. Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals[J]. Journal of Materials Chemistry C, 3, 1309-1318(2015).

    [21] Kneipp K. Surface-enhanced Raman scattering[J]. Physics Today, 60, 40-46(2007).

    [22] Hou X, Wang Q, Mao G M et al. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate[J]. Applied Surface Science, 437, 92-97(2018).

    [23] Xu W S, Bao H M, Zhang H W et al. Ultrasensitive surface-enhanced Raman spectroscopy detection of gaseous sulfur-mustard simulant based on thin oxide-coated gold nanocone arrays[J]. Journal of Hazardous Materials, 420, 126668(2021).

    [24] Wu L L, Pu H B, Huang L J et al. Plasmonic nanoparticles on metal-organic framework: a versatile SERS platform for adsorptive detection of new coccine and orange Ⅱ dyes in food[J]. Food Chemistry, 328, 127105(2020).

    [25] Sultan M A, Abou El-Alamin M M, Wark A W et al. Detection and quantification of warfarin in pharmaceutical dosage form and in spiked human plasma using surface enhanced Raman scattering[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117533(2020).

    [26] Dong X H, Tang S Z, Chen S Y et al. Study on synovial arthritis based on surface-enhanced Raman scattering spectroscopy[J]. Laser & Optoelectronics Progress, 58, 0117001(2021).

    [27] Li M, Yu H, Cheng Y L et al. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate[J]. Ecotoxicology and Environmental Safety, 200, 110780(2020).

    [28] Kimani M M, Lanzarotta A, Batson J S. Trace level detection of select opioids (fentanyl, hydrocodone, oxycodone, and tramadol) in suspect pharmaceutical tablets using surface-enhanced Raman scattering (SERS) with handheld devices[J]. Journal of Forensic Sciences, 66, 491-504(2021).

    [29] Zhou X, Zhao Q, Liu G Q et al. 4-Mercaptophenylboronic acid modified Au nanosheets-built hollow sub-microcubes for active capture and ultrasensitive SERS-based detection of hexachlorocyclohexane pesticides[J]. Sensors and Actuators B: Chemical, 293, 63-70(2019).

    [30] Liu C Y, Xu X H, Hu W X et al. Synthesis of clean cabbagelike (111) faceted silver crystals for efficient surface-enhanced Raman scattering sensing of papaverine[J]. Analytical Chemistry, 90, 9805-9812(2018).

    [31] Li P H, Li P, Tan X C et al. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 412, 2863-2871(2020).

    [32] Lu S H, Wang Z M, Tian F. Application of illegal drugs detection based on surface-enhanced Raman scattering spectroscopy[J]. Laser & Optoelectronics Progress, 55, 030004(2018).

    [33] Zhang J H, Li Y F, Wang H Q et al. Surface enhanced Raman spectroscopy for the rapid inspection of adulterated heroin[J]. The Journal of Light Scattering, 26, 391-393(2014).

    [34] Dong R L, Weng S Z, Yang L B et al. Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines[J]. Analytical Chemistry, 87, 2937-2944(2015).

    [35] Meng J, Tang X H, Zhou B B et al. Designing of ordered two-dimensional gold nanoparticles film for cocaine detection in human urine using surface-enhanced Raman spectroscopy[J]. Talanta, 164, 693-699(2017).

    [36] Yu B R, Cao C T, Li P et al. Sensitive and simple determination of zwitterionic morphine in human urine based on liquid-liquid micro-extraction coupled with surface-enhanced Raman spectroscopy[J]. Talanta, 186, 427-432(2018).

    [37] Sun S J, Guan M, Guo C et al. A novel surface-enhanced Raman scattering method for simultaneous detection of ketamine and amphetamine[J]. RSC Advances, 10, 36609-36616(2020).

    [38] Mao J K, Kang Y L, Yu D D et al. Surface-enhanced Raman spectroscopy integrated with aligner mediated cleavage strategy for ultrasensitive and selective detection of methamphetamine[J]. Analytica Chimica Acta, 1146, 124-130(2021).

    [39] Salajegheh M, Kazemipour M, Foroghi M M et al. Morphine sensing by a green modified molecularly imprinted poly L-lysine/sodium alginate-activated carbon/glassy carbon electrode based on computational design[J]. Electroanalysis, 31, 468-476(2019).

    [40] Abraham P, Renjini S, Vijayan P et al. Review: review on the progress in electrochemical detection of morphine based on different modified electrodes[J]. Journal of the Electrochemical Society, 167, 037559(2020).

    [41] Rana V, Cañamares M V, Kubic T et al. Surface-enhanced Raman spectroscopy for trace identification of controlled substances: morphine, codeine, and hydrocodone[J]. Journal of Forensic Sciences, 56, 200-207(2011).

    [42] Kline N D, Tripathi A, Mirsafavi R et al. Optimization of surface-enhanced Raman spectroscopy conditions for implementation into a microfluidic device for drug detection[J]. Analytical Chemistry, 88, 10513-10522(2016).

    [43] Zhang D J, You H J, Yuan L et al. Hydrophobic slippery surface-based surface-enhanced Raman spectroscopy platform for ultrasensitive detection in food safety applications[J]. Analytical Chemistry, 91, 4687-4695(2019).

    [44] Li W, Li X Z, Yang T Y et al. Detection of saliva morphine using surface-enhanced Raman spectroscopy combined with immunochromatographic assay[J]. Journal of Raman Spectroscopy, 51, 642-648(2020).

    [45] Mella-Raipán J, Romero-Parra J, Recabarren-Gajardo G. DARK classics in chemical neuroscience: heroin and desomorphine[J]. ACS Chemical Neuroscience, 11, 3905-3927(2020).

    [46] Wang L Y, Ni C F, Shen H L et al. Comparison of the detection windows of heroin metabolites in human urine using online SPE and LC-MS/MS: importance of morphine-3-glucuronide[J]. Journal of Analytical Toxicology, 44, 22-28(2019).

    [47] Meadway C, George S, Braithwaite R. A rapid GC-MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine and 6-MAM in urine[J]. Forensic Science International, 127, 136-141(2002).

    [48] Yu W W, White I M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection[J]. The Analyst, 138, 1020-1025(2013).

    [49] Yu W W, White I M. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates[J]. The Analyst, 138, 3679-3686(2013).

    [50] Yu B R, Li P, Zhou B B et al. Sodium chloride crystal-induced SERS platform for controlled highly sensitive detection of illicit drugs[J]. Chemistry-A European Journal, 24, 4800-4804(2018).

    [51] Akçan R, Yildirim M Ş, Ilhan H et al. Surface enhanced Raman spectroscopy as a novel tool for rapid quantification of heroin and metabolites in saliva[J]. Turkish Journal of Medical Sciences, 50, 1470-1479(2020).

    [52] Masterson A N, Hati S, Ren G et al. Enhancing nonfouling and sensitivity of surface-enhanced Raman scattering substrates for potent drug analysis in blood plasma via fabrication of a flexible plasmonic patch[J]. Analytical Chemistry, 93, 2578-2588(2021).

    [53] Pratiwi R, Noviana E, Fauziati R et al. A review of analytical methods for codeine determination[J]. Molecules, 26, 800(2021).

    [54] Subaihi A, Muhamadali H, Mutter S T et al. Quantitative detection of codeine in human plasma using surface-enhanced Raman scattering via adaptation of the isotopic labelling principle[J]. The Analyst, 142, 1099-1105(2017).

    [55] Shende C T, Farquharson A, Brouillette C et al. Quantitative measurements of codeine and fentanyl on a surface-enhanced Raman-active pad test[J]. Molecules, 24, 2578(2019).

    [56] Shende C T, Brouillette C, Farquharson S. Detection of codeine and fentanyl in saliva, blood plasma and whole blood in 5-minutes using a SERS flow-separation strip[J]. The Analyst, 144, 5449-5454(2019).

    Lingyi Zhao, Ruiqin Yang, Weiping Cai. Application of Surface-Enhanced Raman Spectroscopy in the Detection of Classical Opioids[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700002
    Download Citation