• Photonics Research
  • Vol. 4, Issue 2, 0049 (2016)
S. C. V. Latas
Author Affiliations
  • I3N—Institute of Nanostructures, Nanomodelling and Nanofabrication, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal
  • show less
    DOI: 10.1364/prj.4.000049 Cite this Article Set citation alerts
    S. C. V. Latas. High-energy plain and composite pulses in a laser modeled by the complex Swift–Hohenberg equation[J]. Photonics Research, 2016, 4(2): 0049 Copy Citation Text show less
    References

    [1] N. Akhmediev, A. Ankiewicz. Dissipative Solitons(2005).

    [2] J. Lega, J. Moloney, A. Newell. Swift–Hohenberg equation for lasers. Phys. Rev. Lett., 73, 2978-2981(1994).

    [3] H. Sakaguchi, H. Brand. Localized patterns for the quintic complex Swift–Hohenberg equation. Phys. D, 117, 95-105(1998).

    [4] I. Aranson, L. Kramer. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys., 74, 99-143(2002).

    [5] K. Maruno, A. Ankiewicz, N. Akhmediev. Exact soliton solutions of the one-dimensional complex Swift–Hohenberg equation. Phys. D, 176, 44-66(2003).

    [6] J. Soto-Crespo, N. Akhmediev. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift–Hohenberg equation. Phys. Rev. E, 66, 066610(2002).

    [7] H. Wang, L. Yanti. An efficient numerical method for the quintic complex Swift–Hohenberg equation. Numer. Math. Theor. Appl., 4, 237-254(2011).

    [8] V. Afanajev, N. Akhmediev, J. Soto-Crespo. Three forms of localized solutions of the quintic complex Ginzburg–Landau equation. Phys. Rev. E, 53, 1931-1939(1996).

    [9] N. Akhmediev, A. Rodrigues, G. Town. Interaction of dual frequency pulses in passively mode-locked lasers. Opt. Commun., 187, 419-426(2001).

    [10] N. Akhmediev, J. Soto-Crespo, P. Grelu. Roadmap to ultra-short record high-energy pulses out of laser oscillators. Phys. Lett. A, 372, 3124-3128(2008).

    [11] W. Chang, J. Soto-Crespo, P. Vouzas, N. Akhmediev. Extreme amplitude spikes in a laser model described by the complex Ginzburg–Landau equation. Opt. Lett., 40, 2949-2952(2015).

    [12] Z. Liu, S. Zhang, F. Wise. Rogue waves in a normal dispersion fiber laser. Opt. Lett., 40, 1366-1369(2015).

    [13] C. Lecaplain, P. Grelu, J. M. Soto-Crespo, N. Akhmediev. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett., 108, 233901(2012).

    [14] W. Chang, A. Ankiewicz, J. Soto-Crespo, N. Akhmediev. Dissipative soliton resonances in laser models with parameter management. J. Opt. Soc. Am. B, 25, 1972-1977(2008).

    [15] M. Ferreira. Nonlinear Effects in Optical Fibers(2011).

    [16] F. If, P. Berg, P. L. Christiansen, O. Skovgaard. Split-step spectral method for nonlinear Schrodinger-equation with absorbing boundaries. J. Comp. Phys., 72, 501-503(1987).

    S. C. V. Latas. High-energy plain and composite pulses in a laser modeled by the complex Swift–Hohenberg equation[J]. Photonics Research, 2016, 4(2): 0049
    Download Citation