• Photonics Research
  • Vol. 9, Issue 9, 1683 (2021)
Yaozheng Wu1, Bin Liu1、3、*, Feifan Xu1, Yimeng Sang1, Tao Tao1, Zili Xie1, Ke Wang1, Xiangqian Xiu1, Peng Chen1, Dunjun Chen1, Hai Lu1, Rong Zhang1、2、4、*, and Youdou Zheng1
Author Affiliations
  • 1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
  • 2Xiamen University, Xiamen 361005, China
  • 3e-mail: bliu@nju.edu.cn
  • 4e-mail: rzhangxmu@xmu.edu.cn
  • show less
    DOI: 10.1364/PRJ.424528 Cite this Article Set citation alerts
    Yaozheng Wu, Bin Liu, Feifan Xu, Yimeng Sang, Tao Tao, Zili Xie, Ke Wang, Xiangqian Xiu, Peng Chen, Dunjun Chen, Hai Lu, Rong Zhang, Youdou Zheng. High-efficiency green micro-LEDs with GaN tunnel junctions grown hybrid by PA-MBE and MOCVD[J]. Photonics Research, 2021, 9(9): 1683 Copy Citation Text show less
    References

    [1] K. Zhang, D. Peng, K. M. Lau, Z. J. Liu. Fully-integrated active matrix programmable UV and blue micro-LED display system-on-panel (SoP). J. Soc. Inf. Disp., 25, 240-248(2017).

    [2] T. Z. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. J. Liang, Y. J. Lu, C. S. W. Huang, W. J. Guo, H. C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 8, 1557(2018).

    [3] M. D. Dawson, J. J. D. McKendry, Z. Gong, E. Gu, A. E. Kelly, D. Massoubre, R. P. Green, B. Guilhaber. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photon. Technol. Lett., 22, 1346-1348(2010).

    [4] P. F. Tian, X. Y. Liu, S. Y. Yi, Y. X. Huang, S. L. Zhang, X. L. Zhou, L. G. Hu, L. R. Zheng, R. Liu. High-speed underwater optical wireless communication using a blue GaN-based micro-LED. Opt. Express, 25, 1193-1201(2017).

    [5] J. Y. Lin, H. X. Jiang. Development of microLED. Appl. Phys. Lett., 116, 100502(2020).

    [6] S. Neugebauer, M. P. Hoffmann, H. Witte, J. Bläsing, A. Dadgar, A. Strittmatter, T. Niermann, M. Narodovitch, M. Lehmann. All metalorganic chemical vapor phase epitaxy of p/n-GaN tunnel junction for blue light emitting diode applications. Appl. Phys. Lett., 110, 102104(2017).

    [7] S. Krishnamoorthy, F. Akyol, P. S. Park, S. Rajan. Low resistance GaN/InGaN/GaN tunnel junctions. Appl. Phys. Lett., 102, 113503(2013).

    [8] L. Esaki. New phenomenon in narrow germanium p–n junctions. Phys. Rev., 109, 603-604(1958).

    [9] J. T. Leonard, D. A. Cohen, B. P. Yonkee, R. M. Farrell, T. Margalith, S. Lee, S. P. DenBaars, J. S. Speck, S. Nakamura. Nonpolar III-nitride vertical-cavity surface emitting lasers incorporating an ion implanted aperture. Appl. Phys. Lett., 107, 011102(2015).

    [10] M. T. Hardy, C. O. Holder, D. F. Feezell, S. Nakamura, J. S. Speck, D. A. Cohen, S. P. DenBaars. Indium-tin-oxide clad blue and true green semipolar InGaN/GaN laser diodes. Appl. Phys. Lett., 103, 081103(2013).

    [11] C. Lund, B. Romanczyk, M. Catalano, Q. X. Wang, W. J. Li, D. DiGiovanni, M. J. Kim, P. Fay, S. Nakamura, S. P. DenBaars, U. K. Mishra, S. Keller. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices. J. Appl. Phys., 121, 185707(2017).

    [12] X. D. Yan, W. J. Li, S. M. Islam, K. Pourang, H. L. Xing, P. Fay, D. Jena. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions. Appl. Phys. Lett., 107, 163504(2015).

    [13] S. Krishnamoorthy, P. S. Park, S. Rajan. Demonstration of forward inter-band tunneling in GaN by polarization engineering. Appl. Phys. Lett., 99, 233504(2011).

    [14] J. Simon, Z. Zhang, K. Goodman, H. L. Xing, T. Kosel, P. Fay, D. Jena. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures. Phys. Rev. Lett., 103, 026801(2009).

    [15] E. Richter, T. Stoica, U. Zeimer, C. Netzel, M. Weyers, G. Tränkle. Si doping of GaN in hydride vapor-phase epitaxy. J. Electron. Mater., 42, 820-825(2013).

    [16] S. Fritze, A. Dadgar, H. Witte, M. Bügler, A. Rohrbeck, J. Bläsing, A. Hoffmann, A. Krost. High Si and Ge n-type doping of GaN doping—limits and impact on stress. Appl. Phys. Lett., 100, 122104(2012).

    [17] A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, S. P. DenBaars. Hydrogen passivation of deep levels in n–GaN. Appl. Phys. Lett., 77, 1499-1501(2000).

    [18] A. Y. Polyakov, N. B. Smirnov, S. J. Pearton, F. Ren, B. Theys, F. Jomard, Z. Teukam, V. A. Dmitriev, A. E. Nikolaev, A. S. Usikov, I. P. Nikitina. Fermi level dependence of hydrogen diffusivity in GaN. Appl. Phys. Lett., 79, 1834-1836(2001).

    [19] J. Neugebauer, C. G. Van de Walle. Role of hydrogen in doping of GaN. Appl. Phys. Lett., 68, 1829-1831(1996).

    [20] Y. Kuwano, M. Kaga, T. Morita, K. Yamashita, K. Yagi, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki. Lateral hydrogen diffusion at p-GaN layers in nitride-based light emitting diodes with tunnel junctions. Jpn. J. Appl. Phys., 52, 08JK12(2013).

    [21] T. Takeuchi, G. Hasnain, S. Corzine, M. Hueschen, R. P. Schneider, C. Kocot, M. Blomqvist, Y. Chang, D. Lefforge, M. R. Krames, L. W. Cook, S. A. Stockman. GaN-based light emitting diodes with tunnel junctions. Jpn. J. Appl. Phys., 40, L861-L863(2001).

    [22] B. P. Yonkee, E. C. Young, S. P. Denbaars, S. Nakamura, J. S. Speck. Silver free III-nitride flip chip light-emitting-diode with wall plug efficiency over 70% utilizing a GaN tunnel junction. Appl. Phys. Lett., 109, 191104(2016).

    [23] E. C. Young, B. P. Yonkee, F. Wu, S. H. Oh, S. P. DenBaars, S. Nakamura, J. S. Speck. Hybrid tunnel junction contacts to III–nitride light-emitting diodes. Appl. Phys. Express, 9, 022102(2016).

    [24] J. T. Leonard, E. C. Young, B. P. Yonkee, D. A. Cohen, T. Margalith, S. P. DenBaars, J. S. Speck, S. Nakamura. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact. Appl. Phys. Lett., 107, 091105(2015).

    [25] M. Malinverni, D. Martin, N. Grandjean. InGaN based micro light emitting diodes featuring a buried GaN tunnel junction. Appl. Phys. Lett., 107, 051107(2015).

    [26] Y. Z. Wu, B. Liu, Z. H. Li, T. Tao, Z. L. Xie, X. Q. Xiu, P. Chen, D. J. Chen, H. Lu, Y. Shi, R. Zhang, Y. D. Zheng. Homo-epitaxial growth of high crystal quality GaN thin films by plasma assisted–molecular beam epitaxy. J. Cryst. Growth, 506, 30-35(2019).

    [27] R. Baets, D. Delbeke, R. Bockstaele, P. Bienstman. Resonant-cavity light-emitting diodes: a review. Proc. SPIE, 4996, 74-86(2003).

    [28] S. F. Chichibu, K. Hazu, Y. Ishikawa, M. Tashiro, H. Namita, S. Nagao, A. Uedono. Time-resolved photoluminescence, positron annihilation, and Al0.23Ga0.77N/GaN heterostructure growth studies on low defect density polar and nonpolar freestanding GaN substrates grown by hydride vapor phase epitaxy. J. Appl. Phys., 111, 103518(2012).

    [29] X. D. Yan, W. J. Li, S. M. Islam, K. Pourang, H. Xing, P. Fay, D. Jena. Polarization-induced Zener tunnel diodes in GaN/InGaN/GaN heterojunctions. Appl. Phys. Lett., 107, 163504(2015).

    [30] S. Krishnamoorthy, D. N. Nath, F. Akyol, P. S. Park, M. Esposto, S. Rajan. Polarization-engineered GaN/InGaN/GaN tunnel diodes. Appl. Phys. Lett., 97, 203502(2010).

    [31] J. Simon, Z. Zhang, K. Goodman, H. Xing, T. Kosel, P. Fay, D. Jena. Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures. Phys. Rev. Lett., 103, 026801(2009).

    [32] V. K. Malyutenko, S. S. Bolgov, A. D. Podoltsev. Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl. Phys. Lett., 97, 251110(2010).

    [33] S. Huang, B. Fan, Z. Chen, Z. Zheng, H. Luo, Z. Wu, G. Wang, H. Jiang. Lateral current spreading effect on the efficiency droop in GaN based light-emitting diodes. J. Disp. Technol., 9, 266-271(2013).

    [34] K. Zhang, Y. B. Liu, H. S. Kwok, Z. J. Liu. Investigation of electrical properties and reliability of GaN-based micro-LEDs. Nanomaterials, 10, 689(2020).

    [35] Z. Gong, S. R. Jin, Y. J. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, M. D. Dawson. Size-dependent light output, spectral shift, and self-heating of 400  nm InGaN light-emitting diodes. J. Appl. Phys., 107, 013103(2010).

    [36] J. M. Smith, R. Ley, M. S. Wong, Y. H. Baek, J. H. Kang, C. H. Kim, M. J. Gordon, S. Nakamura, J. S. Speck, S. P. DenBaars. Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1  μm in diameter. Appl. Phys. Lett., 116, 071102(2020).

    [37] P. Tian, J. J. D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, M. D. Dawson. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett., 101, 231110(2012).

    [38] S. S. Konoplev, K. A. Bulashevich, S. Y. Karpov. From large-size to micro-LEDs: scaling trends revealed by modeling. Phys. Status Solidi A, 215, 1700508(2017).

    [39] K. A. Bulashevich, S. Y. Karpov. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi RRL, 10, 480-484(2016).

    Yaozheng Wu, Bin Liu, Feifan Xu, Yimeng Sang, Tao Tao, Zili Xie, Ke Wang, Xiangqian Xiu, Peng Chen, Dunjun Chen, Hai Lu, Rong Zhang, Youdou Zheng. High-efficiency green micro-LEDs with GaN tunnel junctions grown hybrid by PA-MBE and MOCVD[J]. Photonics Research, 2021, 9(9): 1683
    Download Citation