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We fabricated p-i-n tunnel junction (TJ) contacts for hole injection on c-plane green micro-light-emitting diodes
(micro-LEDs) by a hybrid growth approach using plasma-assisted molecular beam epitaxy (PA-MBE) and metal–
organic chemical vapor deposition (MOCVD). The TJ was formed by an MBE-grown ultra-thin unintentionally
doped InGaN polarization layer and an n��∕n�-GaN layer on the activated p��-GaN layer prepared by
MOCVD. This hybrid growth approach allowed for the realization of a steep doping interface and ultrathin
depletion width for efficient inter-band tunneling. Compared to standard micro-LEDs, the TJ micro-LEDs
showed a reduced device resistance, enhanced electroluminescence intensity, and a reduced efficiency droop.
The size-independent J-V characteristics indicate that TJ could serve as an excellent current spreading layer.
All these results demonstrated that hybrid TJ contacts contributed to the realization of high-performance
micro-LEDs with long emission wavelengths. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.424528

1. INTRODUCTION

Owing to their high luminous efficiency, chemical stability, and
long lifetime, GaN-based LEDs are widely used in solid-state
lighting and displays. Compared with traditional LEDs, the size
of micro-LEDs can be decreased to tens of micrometers, and
each pixel can be controlled or driven independently, which has
achieved many advantages in high-resolution displays and
visible-light communication (VLC) [1–5]. The outstanding
performance of blue micro-LEDs has already been demon-
strated in VLC. However, realizing long-wavelength emission
for InGaN micro-LEDs is still challenging due to the severe
efficiency droop, with the indium content increasing in the
InGaN layer. Besides, GaN epi-layers with high crystal quality
and low p-type conductivity are still hard to realize due to high
activation energy for Mg, which results in insufficient current
spreading and low hole injection efficiency.

Tunnel junction (TJ) is an effective way to enhance hole
injection and reduce the sheet resistance of GaN-based opto-
electronic devices [6,7]. The TJ diode generally requires highly
doped p��∕n��-GaN as the interface of a p-n junction. The
electrons may tunnel from the valence band of p��-GaN to the
conduction band of n��-GaN at a specific reverse bias voltage,
and finally result in hole injection into the active region effec-
tively [8]. The introduction of TJ makes on both ends of the

device n-type GaN layers with relatively low resistance. This
effectively avoids the p-type contact difficulty in traditional
LED devices and finally simplifies the device-fabrication pro-
cess. Besides, the preparation of TJ increases the lateral current
spreading and achieves uniform optical output and relatively
low forward turn-on voltage. It not only prevents the additional
optical loss compared with a traditional transparent current
spreading layer such as indium tin oxide (ITO), but also avoids
the influence of high ITO growth temperature on the crystal
quality of the active region [9,10].

The realization of a GaN-based n��∕p�� homo-junction
for tunneling is still challenging due to the low direct band-to-
band tunneling probability owing to its wide bandgap. Several
groups have tried to introduce a thin InGaN or AlN polariza-
tion dipole layer to shrink the width of the depletion region
[11–14]. Although the n-type GaN with high electron concen-
tration above 1020 cm−3 can be achieved by Si or Ge doping,
the highly doped p-GaN is still difficult to prepare by metal–
organic chemical vapor deposition (MOCVD) owing to hydro-
gen passivation [15–17]. Besides, it is difficult to fabricate TJs
by MOCVD because the buried p-GaN below a highly doped
n-GaN is not easy to be activated due to the difficult diffusion
of hydrogen atoms [18,19]. Further, Mg memory effects may
lead to impurity compensation in the n-GaN layer and finally
enlarged depletion width [20,21]. On the contrary, the absence
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of hydrogen introduction during growth by molecular beam
epitaxy (MBE) makes it an ideal technique for the fabrication
of devices with TJs [22–25].

In this work, we report on the realization of high-efficiency
green micro-LEDs with GaN-based TJs grown hybrid by
plasma-assisted MBE (PA-MBE) and MOCVD. As shown
in Fig. 1(a), the epi-wafer structures can be divided into two
parts: a standard LED structure fabricated by MOCVD and
an ultra-thin unintentionally doped (UID) InGaN polarization
layer as well as an n��∕n�-GaN layer prepared by PA-MBE.

2. EXPERIMENT

The standard LED structure was grown on patterned c-plane
sapphire substrates and consists of a UID-GaN template layer,
a Si-doped n-GaN layer, a six-period Si-doped super-lattice
layer proposed to release the stress in active region and reduce
quantum-confined Stark effect (QCSE) effects, an active region
with nine-period In0.28Ga0.72N∕GaN MQWs with photolu-
minescence (PL) emission wavelength of 530 nm, an AlGaN
electron-blocking layer (EBL), and a Mg-doped p�-GaN layer
with a thin p��-GaN (∼15 nm) as a contact layer. After the
MOCVD growth, the epi-wafer was annealed effectively to ac-
tivate the p-type layer. Before the MBE regrowth, a treatment
by hydrofluoric acid was needed to remove the residual O and
Mg on the LED epi-wafer surface [22]. The standard LED epi-
wafer was then loaded into the MBE chamber to regrow an
ultra-thin UID InGaN layer, a 30 nm n��-GaN layer, and
a 200 nm n�-GaN layer. The surface preparation and the dis-
location control at the regrowth interface have been studied in
our previous work [26]. According to the transmission electron
microscopy (TEM) images in Figs. 1(c) and 1(d), the thick-
nesses of the InGaN quantum well (QW) and GaN quantum
barrier (QB) were measured to be 3 and 12 nm, respectively.
The clear and sharp interfaces of each layer were shown intui-
tively, which manifest that the crystalline quality of InGaN
QWs was not found to deteriorate after the n��∕n�-GaN re-
growth processes. The thickness of the InGaN polarization
layer was around 1.5 nm, and no new dislocations were gen-
erated at the regrowth interface. As illustrated in Fig. 1(e), the
strong intensity of satellite peaks of InGaN/GaN MQWs can
be seen clearly, which indicates the sharp MQWs interface and
the good crystal quality after regrowth. The secondary ion mass
spectroscopy (SIMS) profiles were shown in Fig. 1(f ). The
concentrations of silicon and magnesium in the n��-GaN
and p��-GaN TJ layers were 1.08 × 1020 cm−3 and 1.16 ×
1020 cm−3, respectively, while in the n�-GaN and p�-GaN
layer were 3.42 × 1019 cm−3 and 1.01 × 1020 cm−3, respec-
tively. At the interface of the TJ layer, the concentration of
Mg dopant decreased sharply at the side of the n��-GaN layer
owing to the avoidance of the Mg memory effect with the
PA-MBE regrowth processes, which guaranteed the high elec-
tron and hole concentration distributed at the n��-GaN and
p��-GaN layer, respectively.

For device fabrication, 200 nm thick SiO2 mask layers both
with and without TJ epi-wafers were firstly deposited by
plasma-enhanced chemical vapor deposition (PECVD) and
then transformed into micro-pillar pixel arrays with the depth
of 1.2 μm and different diameters of 40, 20, 10, and 5 μm by

standard contact photolithography, reactive ion etching (RIE),
and inductively coupled plasma (ICP) etching processes. The
mask layer was then removed by buffered oxide etching (BOE)
solution. Next, a 200 nm thick SiO2 passivation layer was de-
posited onto both samples by PECVD after wet chemical sur-
face treatment by potassium hydroxide (KOH) and nitric acid
(HNO3). The metal contact windows were chemically etched
by RIE processes. To simplify the electrode fabrication proc-
esses, the n-/p-type metal contact (Cr/Au, 50 nm/150 nm)
for both TJ and standard micro-LED samples was deposited
on the corresponding region. The top-view SEM images of
TJ micro-LEDs are shown in Fig. 1(b).

3. RESULTS AND DISCUSSION

In order to study the influence of device size on their optical
performance, room-temperature μ-PL and time-resolved PL
(TR-PL) measurements were taken into consideration and
the results are shown in Fig. 2. Samples were excited by a
375 nm diode laser and the laser spot was focused onto the
sample with a diameter of 2 μm. The luminescence signals were
collected by a Horiba iHR320 monochromator and detected
by a Synapse CCD detector. While in the measurement of
time-resolved PL (TRPL), the signal was collected by a

Fig. 1. (a) Schematic diagram of the TJ micro-LED. (b) Top view
SEM images of TJ micro-LEDs. (c) and (d) TEM images of TJ LED
structure and InGaN polarization layer. (e) Experimental and simu-
lated XRD scans along (0002) direction. (f ) Depth profiles of Si,
Mg, In, and Al concentrations of the TJ LED measured by SIMS.
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time-correlated single-photon counting system (TCSPC) with
a time resolution of 50 ps. It can be seen from Fig. 2(a) that the
intensity of μ-PL spectra is enhanced significantly as the size of
the devices decreased from 40 to 5 μm. The enhanced μ-PL
spectral intensity cannot be owing to the diminished polariza-
tion field cause by strain relaxation in the active region, because
the blueshift of the μ-PL emission peak was not found in the
measurements. On the contrary, we were inclined to believe
that the Purcell effect may play an important role in this phe-
nomenon owing to the reduced optical cavity size. In fact, the
enhancement factor F can be described as follows [27]:

F � Γcav

Γ0

� 3Qλ3

4π2V mod

,

where Q is the cavity quality factor and V mod is the modal vol-
ume of the cavity. It represents the ratio of the emission rate in
the system with an optical cavity (Γcav) and without an optical
cavity (Γ0). Compared with the planar LED structure, the in-
troduction of the sidewall in the columnar micro-LED struc-
ture reduced the probability of the total reflection of light.
Thus, most of the light is not limited within LEDs, which

therefore reduces the non-radiative recombination rate.
Therefore, it is believed that the reduced size of the micro-
LED cavity may finally lead to an improvement in the enhance-
ment factor. Further, a strong enhancement of the spontaneous
emission rate was examined by room temperature TR-PL
analysis. As shown in Fig. 2(b), the spontaneous emission
lifetime was obtained by fitting TR-PL traces with a standard
bi-exponential component model described as follows [28]:

I�t� � A1e
�
−t
τ1

�
� A2e

�
−t
τ2

�
,

where A1 and A2 are constants, and τ1 and τ2 are for the fast
and slow decay components. It can be found in the inset that
the PL emission lifetime was influenced by the size of device
greatly and the micro-LED with 5 μm diameter showed the
highest spontaneous emission rate. In fact, the PL emission life-
time in an optical cavity can be smaller than that in free space
because the spontaneous emission rate depends on the sur-
rounding electromagnetic vacuum fields.

The current density versus voltage characterizations of stan-
dard LEDs and TJ-LEDs with a diameter of 40 μm was exam-
ined by a Lakeshore probe system equipped with liquid helium

Fig. 2. (a) Enhanced PL spectra with different device size. (b) Nor-
malized TR-PL spectra of designed TJ micro-LEDs with different device
size. Inset shows the relationship between τ1 (τ2) and device size.

Fig. 3. (a) Room temperature J-V characterizations of TJ micro-
LEDs and standard micro-LEDs. (b) Temperature dependence of
J-V curves for TJ micro-LEDs.
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cycle refrigeration and a Keithley 2636 Digital source-meter;
the results are shown in Fig. 3(a). The turn-on voltage of
the TJ micro-LEDs was estimated to be around 2.9 V, smaller
than that of the standard micro-LED structure. By fitting the
linear regime (3.4–4 V) of the I-V curves, the total resistance of
TJ micro-LEDs (≈145 Ω) is significantly lower than that of
normal structure micro-LEDs (≈380 Ω). The reason can be
explained by the perfect current spreading performance and en-
hanced hole injection efficiency of the TJ-LED structure. For a
detailed study of the difference between TJ micro-LEDs and
standard micro-LEDs, the J-V curves were converted to loga-
rithmic coordinate. The test scope was divided into regions I,
II, and III according to the working state of the LEDs. In region
I, the reverse electrical leakage current of these two kinds of
micro-LED structures has a good coincidence and remained
at a low magnitude. In region II, where the applied forward
voltage is smaller than the tunneling voltage, the leakage cur-
rent density of the TJ micro-LEDs showed a lower magnitude
than that of standard micro-LEDs. It can be concluded that the
reason for this is the low tunneling rate hampered the forward
electrical leakage current of the sub-standard micro-LED struc-
ture. In region III, when the applied forward voltage is higher
than the tunneling voltage, the forward current density of TJ
micro-LEDs increased dramatically and finally became higher
than that of standard micro-LEDs. In this case, it is believed
that the TJs are operated at the tunneling voltage with a high
tunneling rate and provide a high magnitude of the hole for
current injection [12].

To further explore the electrical properties of TJ micro-
LEDs under the forward bias, I-V characteristics with temper-
ature ranging from 10 to 290 K were gathered and the results
are shown in Fig. 3(b). Unlike standard LEDs, it can be seen
that the J-V curves in region II showed no change under varied
temperature and the forward leakage current remained at a low
level, which indicated inter-band tunneling as the transport
mechanism in such TJs. The TJs behave like a Zener tunneling
diode, which shows a strong backward diode behavior with a
much higher current and weak temperature dependence at re-
verse bias than at forward bias [29–31]. Moreover, when the
forward bias increased until the devices worked at region
III, the J-V characterization showed strong temperature
dependence. This indicated that the high current density of
inter-band tunneling is realized in this region. The performance
of the device was the same as that of a standard LED. In fact,
the TJs act as a “switch” which showed an “OFF” status in re-
gion II and an “ON” status in region III. However, at the boun-
dary of regions II and III, the devices showed strong
temperature dependence and decreased from 2.0 V at 10 K
to 1.6 V at 290 K. In this area, although the tunneling rate
is relatively low, the magnitude of electrical leakage current
due to the forward bias is influenced by temperature markedly
and therefore shows a higher current measurement with an in-
creased temperature.

As shown in Fig. 4(a), the room temperature electrolumi-
nescence (EL) spectra of single-pixel TJ micro-LEDs with
the diameter of 40 μm were measured at current density rang-
ing from 2.4 × 10−5 A∕cm2 to 31.85 A∕cm2, and the peak
emission wavelength showed a blueshift of around 12 nm,

mainly attributed to the polarization-related quantum-confined
Stark effect (QCSE) in the MQWs. The optical micrograph of
the TJ micro-LEDs tested at 15.92 A∕cm2 is also shown in the
inset. The relationship between the injection current and the
EL density of the two kinds of micro-LED structures manifests
that the TJ micro-LEDs showed a better luminescent property
at high current injection than standard micro-LEDs. The
dependence of the normalized EQE on the current density
of both two kinds of micro-LEDs is shown in Fig. 4(b). At
the current density of 31.85 A∕cm2, the normalized EQEs
of TJ and standard micro-LEDs were 75% and 53%, respec-
tively. Besides, the peak of normalized EQE of TJ micro-LEDs
is around 2.39 A∕cm2, slightly smaller than that of standard
micro-LEDs, which is around 3.58 A∕cm2. The normalized
EQE peak of TJ micro-LEDs was gentler than that of the stan-
dard one. Moreover, the TJ micro-LEDs showed a higher EQE
than the reference LEDs and can be lighted at an even lower

Fig. 4. (a) EL intensity of two samples with device diameter of
40 μm. Inset shows the EL intensity of TJ micro-LEDs with the cur-
rent density ranging from 2.4 × 10−5 A∕cm2 to 31.85 A∕cm2 and the
optical micrograph of TJ micro-LEDs measured at 15.92 A∕cm2.
(b) Dependence of normalized EQE on current density for two kinds
of devices.
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injection current density. The reduced efficiency droop and
lower injection current density for luminescence may be attrib-
uted to the enhanced hole injection rate, which finally increased
the wave function overlap of electrons and holes even at a low
injection current density. This also may be owing to the im-
proved current spreading uniformity in n�-GaN, which may
reduce the current crowding effect [32,33]. In fact, according
to the ABC model, EQE can be expressed as follows:

EQE � LEE · IQE � LEE ·
ηinjBn2

An� Bn2 � Cn3
,

where LEE represents light extraction efficiency, IQE is the in-
ternal quantum efficiency, n is the carrier concentration, ηinj is
the injection efficiency, A is corresponding to Shockley–Read–
Hall (SRH) non-radiative recombination, B is corresponding
to radiative recombination, and C is associated with Auger
recombination.

The influence of size reduction on the performances of TJ
micro-LEDs was also studied with the diameters of 40, 20, 10
and 5 μm. For better device performances, the n-type metal
contact (Ti/Al/Ni/Au, 30/150/50/100 nm) was deposited on
the n-pad region and then annealed at 850°C in nitrogen
atmosphere for Ohmic contact. The current density as a func-
tion of applied voltage for different device size is shown in
Fig. 5(a). Unlike the J-V characteristics of traditional micro-
LEDs [34,35], one can clearly see that the current densities
were independent of device size when the applied forward volt-
age was higher than the threshold voltage, which is valid evi-
dence for the high performance of current spreading efficiency
with TJs. However, when below the threshold voltage, the for-
ward leakage current showed a strong dependence on the size of
device. The leakage current increased parallel with the size of
device decreasing from 40 to 5 μm, which indicated that the
increased leakage current was not leaked from the bulk of TJs
but the sidewall defects caused by dry etching [36]. The nor-
malized EQE of micro-LEDs with different device size is rep-
resented as a function of current density in Fig. 5(b). It is
obvious that the normalized EQE depends on the size of device.
Smaller LEDs achieve their maximum EQE at a higher current
density and show a reduced efficiency droop at high injection
current density. Besides, in a logarithmic scale, the onset of
EQE tends to move towards high current densities as the size
of device decreases to 5 μm. The surface recombination effect
on the sidewalls may play an important role in this onset tran-
sition due to the increased surface/bulk ratio [37,38]. The de-
fect-related non-radiative recombination coefficient, A, can be
described as follows [36,39]:

A � A0 � vs
p
A1

,

where p is the active region perimeter, A1 is the area of the
device, vs is related to surface recombination velocity, and
A0 is a bulk SRH coefficient. Subsequently, the EQE is reduced
as the area of device decreases, which is in agreement with ex-
perimentally observed trends in insets.

4. CONCLUSIONS

In summary, we fabricated GaN-based TJs on traditional green
LED epi-wafers by PA-MBE to increase the hole injection rate.
No new dislocations were observed at the regrowth interface.
The steep doping interface was measured with SIMS, which
may result in ultrathin depletion width for efficient inter-band
tunneling. The as-prepared epi-wafers were fabricated into
micro-LEDs with different sizes. Compared with standard
micro-LEDs, TJ micro-LEDs showed a reduced device resis-
tance, enhanced EL intensity, and a reduced efficiency droop.
The size-independent J-V characteristics of the green TJ micro-
LED also revealed that the MBE-grown n�-GaN served as a
uniform current spreading layer, which paves the way for
the fabrication of high-performance micro-LEDs.

Funding. Collaborative Innovation Center of Solid State
Lighting and Energy-Saving Electronics; Leading-Edge
Technology Program of Jiangsu Natural Science Foundation
(BK20202005); National Natural Science Foundation of
China (61921005, 61974062, 62074077); National
Key Research and Development Program of China
(2017YFB0403100, 2017YFB0403101).

Fig. 5. (a) J-V characteristics of TJ micro-LEDs with different de-
vice size. (b) Relationship between normalized EQE and current den-
sity of devices with different device size.
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