• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170615 (2019)
Zhenggang Lian1、*, Xiang Chen1, Xin Wang2, Shuqin Lou2, Zhen Guo1, and Yabin Pi1
Author Affiliations
  • 1 Yangtze Optical Electronic Co. Ltd., Wuhan, Hubei 430205, China
  • 2 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, China
  • show less
    DOI: 10.3788/LOP56.170615 Cite this Article Set citation alerts
    Zhenggang Lian, Xiang Chen, Xin Wang, Shuqin Lou, Zhen Guo, Yabin Pi. Preparation and Potential Applications of Microstructured and Integrated Functional Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170615 Copy Citation Text show less
    References

    [1] Kao K C, Hockham G A. Dielectric fibre surface waveguide for optical frequencies[M]. ∥Brown J. Electromagnetic wave theory. Netherlands: Elsevier, 441-444(1967).

    [2] Miya T, Terunuma Y, Hosaka T et al. Ultimate low-loss single-mode fibre at 1.55 μm[J]. Electronics Letters, 15, 106-108(1979).

    [3] Mears R J, Reekie L, Jauncey I M et al. Low-noise erbium-doped fibre amplifier operating at 1.54 μm[J]. Electronics Letters, 23, 1026-1028(1987).

    [4] Knight J C, Birks T A. Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 21, 1547-1549(1996).

    [5] Kolyadin A N, Kosolapov A F, Pryamikov A D et al. Light transmission in negative curvature hollow core fiber in extremely high material loss region[J]. Optics Express, 21, 9514-9519(2013).

    [6] Joannopoulos J D, Johnson S G, Winn J N et al[M]. Photonic crystals: molding the flow of light(2011).

    [7] Yablonovitch E. Photonic crystals: semiconductors of light[J]. Scientific American, 285, 46-55(2001).

    [8] Mangan B J, Farr L, Langford A et al. Low loss (1.7 dB/km) hollow core photonic bandgap fiber. [C]∥Optical Fiber Communication Conference 2004, February 23-27, 2004, Los Angeles, California, United States. Washington, DC: Optical Society of America, PD24(2004).

    [9] Duguay M A, Kokubun Y, Koch T L et al. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures[J]. Applied Physics Letters, 49, 13-15(1986).

    [10] Argyros A. Leon-Saval S G, Pla J, et al. Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres[J]. Optics Express, 16, 5642-5648(2008).

    [11] Litchinitser N M, Abeeluck A K, Headley C et al. Antiresonant reflecting photonic crystal optical waveguides[J]. Optics Letters, 27, 1592-1594(2002).

    [12] Yu F, Wadsworth W J, Knight J C. Low loss silica hollow core fibers for 3-4 μm spectral region[J]. Optics Express, 20, 11153-11158(2012).

    [13] Gao S F, Wang Y Y, Liu X L et al. Low bending loss nodeless hollow-core anti-resonant fiber. [C]∥Conference on Lasers and Electro-Optics, June 5-10, 2016, San Jose, California, United States. Washington, DC: Optical Society of America, SW1I, 4(2016).

    [14] Macchesney J B, resulting product: US4909816[P/OL]. -03-20[2019-07-15]. https:∥xs.zb-welding.com/patent/US4909816A/en.(1990).

    [15] Li M J, Chen X, Liu A P et al. Limit of effective area for single-mode operation in step-index large mode area laser fibers[J]. Journal of Lightwave Technology, 27, 3010-3016(2009).

    [16] Limpert J, Liem A, Reich M et al. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Optics Express, 12, 1313-1319(2004).

    [17] Eidam T, Rothhardt J, Stutzki F et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 19, 255-260(2011).

    [18] Stutzki F, Jansen F, Liem A et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 37, 1073-1075(2012).

    [19] Dong L, Peng X, Li J. Leakage channel optical fibers with large effective area[J]. Journal of the Optical Society of America B, 24, 1689-1697(2007).

    [20] Dong L. McKay H A, Fu L B, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 17, 8962-8969(2009).

    [21] Dasgupta S, Hayes J R, Richardson D J. Leakage channel fibers with microstuctured cladding elements: a unique LMA platform[J]. Optics Express, 22, 8574-8584(2014).

    [22] Jain D, Baskiotis C, Sahu J K. Mode area scaling with multi-trench rod-type fibers[J]. Optics Express, 21, 1448-1455(2013).

    [23] Jain D, Jung Y M, Kim J et al. Robust single-mode all-solid multi-trench fiber with large effective mode area[J]. Optics Letters, 39, 5200-5203(2014).

    [24] Jain D, Baskiotis C. May-Smith T C, et al. Large mode area multi-trench fiber with delocalization of higher order modes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 242-250(2014).

    [25] Napierala M, Beres-Pawlik E, Nasilowski T et al. Photonic crystal fiber with large mode area and characteristic bending properties[J]. IEEE Photonics Technology Letters, 24, 1409-1411(2012).

    [26] Wang X, Lou S Q, Lu W L. Novel bend-resistant large-mode-area photonic crystal fiber with a triangular-core[J]. Acta Physica Sinica, 62, 184215(2013).

    [27] Chen M Y, Zhang Y K. Bend insensitive design of large-mode-area microstructured optical fibers[J]. Journal of Lightwave Technology, 29, 2216-2222(2011).

    [28] Chen M Y, Li Y R, Zhou J et al. Design of asymmetric large-mode area optical fiber with low-bending loss[J]. Journal of Lightwave Technology, 31, 476-481(2013).

    [29] Wang X, Lou S Q, Lu W L. Rectangle lattice large mode area photonic crystal fiber for 2 m compact high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0903606(2014).

    [30] Wang X, Lou S Q, Lu W L. Bending orientation insensitive large mode area photonic crystal fiber with triangular core[J]. IEEE Photonics Journal, 5, 7100408(2013).

    [31] Shephard J D. Jones J D C, Hand D P, et al. High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers[J]. Optics Express, 12, 717-723(2004).

    [32] Ramachandran S, Yan M F, Jasapara J et al. High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber[J]. Optics Letters, 30, 3225-3227(2005).

    [33] Jones D C, Bennett C R, Smith M A et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 39, 3122-3125(2014).

    [34] Michieletto M, Lyngsø J K, Jakobsen C et al. Hollow-core fibers for high power pulse delivery[J]. Optics Express, 24, 7103-7119(2016).

    [35] Wang X, Lou S Q, Sheng X Z et al. Simultaneous measurement of torsion, strain and temperature using a side-leakage photonic crystal fiber loop mirror[J]. Infrared Physics & Technology, 76, 603-607(2016).

    [36] Austin E, van Brakel A, Petrovich M N et al. . Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell[J]. Sensors and Actuators B: Chemical, 139, 30-34(2009).

    [37] Petrovich M N, Wheeler N V, Heidt A M et al. High sensitivity gas detection using hollow core photonic bandgap fibres designed for mid-IR operation. [C]∥SENSORS, 2014 IEEE, November 2-5, 2014, Valencia, Spain. New York: IEEE, 14833726(2014).

    [38] Passaro D, Foroni M, Poli F et al. All-silica hollow-core microstructured Bragg fibers for biosensor application[J]. IEEE Sensors Journal, 8, 1280-1286(2008).

    [39] Wang Y M, Zhang X, Ren X M et al. Design and analysis of a dispersion flattened and highly nonlinear photonic crystal fiber with ultralow confinement loss[J]. Applied Optics, 49, 292-297(2010).

    [40] Ermolov A, Mak K F, Frosz M H et al. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber[J]. Physical Review A, 92, 033821(2015).

    [41] Poletti F, Wheeler N V, Petrovich M N et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 7, 279-284(2013).

    [42] Jung Y M, Sleiffer V, Baddela N et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing. [C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA, United States. Washington, DC: Optical Society of America, PDP5A, 3(2013).

    [43] Chen Y, Liu Z, Sandoghchi S R et al. Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission. [C]∥Optical Fiber Communication Conference Post Deadline Papers, March 22-26, 2015, Los Angeles, California, United States. Washington, DC: Optical Society of America, Th5A, 1(2015).

    [44] Li X Y, Xu Z L, Yang H R et al. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber[J]. Chinese Journal of Lasers, 43, 0405003(2016).

    [45] Qiao W, Gao S C, Lei T et al. Transmission of orbital angular momentum modes in grapefruit-type microstructure fiber[J]. Chinese Journal of Lasers, 44, 0406002(2017).

    [46] Fan Z K, Zhang Z C, Wang B Z et al. Research progress of photonic crystal fiber refractive index sensors based on surface plasmon resonance effect[J]. Laser & Optoelectronics Progress, 56, 070004(2019).

    [47] Hayashi T, Taru T, Shimakawa O et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 19, 16576-16592(2011).

    [48] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 8, 345-348(2014).

    [49] Butsch A, Kang M S, Euser T G et al. Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber[J]. Physical Review Letters, 109, 183904(2012).

    [50] Lian Z G, Horak P, Feng X et al. Nanomechanical optical fiber[J]. Optics Express, 20, 29386-29394(2012).

    [51] Lian Z G, Li Q Q, Furniss D et al. Solid microstructured chalcogenide glass optical fibers for the near- and mid-infrared spectral regions[J]. IEEE Photonics Technology Letters, 21, 1804-1806(2009).

    [52] Price J H V, Monro T M, Ebendorff-Heidepriem H et al. . Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 738-749(2007).

    [54] Shi J D, Feng X, Lian Z G et al. Fabrication of multiple parallel suspended-core optical fibers by sheet-stacking[J]. Optical Fiber Technology, 20, 395-402(2014).

    [55] Horak P, Stewart W, Loh W H. Continuously tunable optical buffer with a dual silicon waveguide design[J]. Optics Express, 19, 12456-12461(2011).

    [56] Podoliak N, Lian Z G, Loh W H et al. Design of dual-core optical fibers with NEMS functionality[J]. Optics Express, 22, 1065-1076(2014).

    [57] Lian Z G, Segura M, Podoliak N et al. Nanomechanical optical fiber with embedded electrodes actuated by Joule heating[J]. Materials, 7, 5591-5602(2014).

    [58] Sandoghchi S R, Jasion G T, Wheeler N V et al. X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms[J]. Optics Express, 22, 26181-26192(2014).

    Zhenggang Lian, Xiang Chen, Xin Wang, Shuqin Lou, Zhen Guo, Yabin Pi. Preparation and Potential Applications of Microstructured and Integrated Functional Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170615
    Download Citation