• Chinese Optics Letters
  • Vol. 21, Issue 12, 120051 (2023)
Zhi Yan, Jingqi Hu, Zhexiang Xiao, Dale Xie, Qiang Cao*, Zongsong Gan**, and Jingyu Zhang***
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/COL202321.120051 Cite this Article Set citation alerts
    Zhi Yan, Jingqi Hu, Zhexiang Xiao, Dale Xie, Qiang Cao, Zongsong Gan, Jingyu Zhang. Decoding the future: opportunities and challenges in next-generation optical data storage [Invited][J]. Chinese Optics Letters, 2023, 21(12): 120051 Copy Citation Text show less
    References

    [1] R. David, G. John, R. John. The digitization of the world from edge to core(2018).

    [2] D. Reinsel, L. Wu, J. F. Gantz, J. Rydning. The China Datasphere: primed to be the largest datasphere by 2025(2019).

    [3] M. Gu, X. Li, Y. Cao. Optical storage arrays: a perspective for future big data storage. Light-Sci. Appl., 3, e177(2014).

    [4] E. Walker, P. M. Rentzepis. Two-photon technology: a new dimension. Nat. Photonics, 2, 406(2008).

    [5] H. Wang, Y. Lei, L. Wang, M. Sakakura, Y. Yu, G. Shayeganrad, P. G. Kazansky. 100-layer error-free 5D optical data storage by ultrafast laser nanostructuring in glass. Laser Photonics Rev., 16, 2100563(2022).

    [6] D. A. Parthenopoulos, P. M. Rentzepis. Three-dimensional optical storage memory. Science, 245, 843(1989).

    [7] E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, E. Mazur. Three-dimensional optical storage inside transparent materials: errata. Opt. Lett., 22, 422(1997).

    [8] Y. Kawata, H. Ueki, Y. Hashimoto, S. Kawata. Three-dimensional optical memory with a photorefractive crystal. Appl. Opt., 34, 4105(1995).

    [9] S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Bergé. Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett., 87, 213902(2001).

    [10] A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett., 82, 3883(1999).

    [11] J. Zhang, M. Gecevicius, M. Beresna, P. G. Kazansky. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett., 112, 033901(2014).

    [12] P. Anderson, E. Aranas, R. Black, S. Bucciarelli, M. Caballero, P. Cameron, B. Canakci, A. Chatzieleftheriou, J. Clegg, D. Cletheroe, B. Cooper, T. Deegan, A. Donnelly, R. Drevinskas, C. Gkantsidis, A. Gomez Diaz, I. Haller, P. Heard, T. Ilieva, R. Joyce, S. Legtchenko, B. Magalhaes, A. Ogus, A. Rowstron, M. Sakakura, N. Schreiner, A. Smith, I. Stefanovici, D. Sweeney, P. Wainman, C. Whittaker, H. Williams, T. Winkler, S. Winzeck, L. Gemini, A. Narazaki, J. Kleinert. Multi-dimensional optical data writing techniques for cloud-scale archival storage. Proc. SPIE, 12408, 1240807(2023).

    [13] P. Anderson, E. B. Aranas, Y. Assaf, R. Behrendt, R. Black, M. Caballero, P. Cameron, B. Canakci, T. D. Carvalho, A. Chatzieleftheriou, R. S. Clarke, J. Clegg, D. Cletheroe, B. Cooper, T. Deegan, A. Donnelly, R. Drevinskas, A. Gaunt, C. Gkantsidis, A. G. Diaz, I. Haller, F. Hong, T. Ilieva, S. Joshi, R. Joyce, M. Kunkel, D. Lara, S. Legtchenko, F. L. Liu, B. Magalhaes, A. Marzoev, M. Mcnett, J. Mohan, M. Myrah, T. Nguyen, S. Nowozin, A. Ogus, H. Overweg, A. Rowstron, M. Sah, M. Sakakura, P. Scholtz, N. Schreiner, O. Sella, A. Smith, I. Stefanovici, D. Sweeney, B. Thomsen, G. Verkes, P. Wainman, J. Westcott, L. Weston, C. Whittaker, P. W. Berenguer, H. Williams, T. Winkler, S. Winzeck. Project Silica: towards sustainable cloud archival storage in glass. Proceedings of the 29th Symposium on Operating Systems Principles(2023).

    [14] P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qiu, K. Hirao. Anomalous anisotropic light scattering in Ge-doped silica glass. Phys. Rev. Lett., 82, 2199(1999).

    [15] Y. Shimotsuma, P. G. Kazansky, J. Qiu, K. Hirao. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett., 91, 247405(2003).

    [16] V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, P. B. Corkum. Optically produced arrays of planar nanostructures inside fused silica. Phys. Rev. Lett., 96, 057404(2006).

    [17] R. S. Taylor, C. Hnatovsky, E. Simova, P. P. Rajeev, D. M. Rayner, P. B. Corkum. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt. Lett., 32, 2888(2007).

    [18] L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun., 171, 279(1999).

    [19] E. Bricchi, P. G. Kazansky. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass. Appl. Phys. Lett., 88, 111119(2006).

    [20] Y. Bellouard, A. Champion, B. McMillen, S. Mukherjee, R. R. Thomson, C. Pépin, P. Gillet, Y. Cheng. Stress-state manipulation in fused silica via femtosecond laser irradiation. Optica, 3, 1285(2016).

    [21] B. Poumellec, M. Lancry, R. Desmarchelier, E. Herve, B. Bourguignon. Parity violation in chiral structure creation under femtosecond laser irradiation in silica glass?. Light-Sci. Appl., 5, e16178(2016).

    [22] A. Rudenko, H. Ma, V. P. Veiko, J.-P. Colombier, T. E. Itina. On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses. Appl. Phys. A, 124, 63(2017).

    [23] A. Rudenko, J. P. Colombier, T. E. Itina. Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass. Phys. Chem. Chem. Phys., 20, 5887(2018).

    [24] R. Taylor, C. Hnatovsky, E. Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev., 2, 26(2008).

    [25] R. Stoian, K. Mishchik, G. Cheng, C. Mauclair, C. D’Amico, J. P. Colombier, M. Zamfirescu. Investigation and control of ultrafast laser-induced isotropic and anisotropic nanoscale-modulated index patterns in bulk fused silica. Opt. Mater. Express, 3, 1755(2013).

    [26] Y. Dai, A. Patel, J. Song, M. Beresna, P. G. Kazansky. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass. Opt. Express, 24, 19344(2016).

    [27] D. Tan, K. N. Sharafudeen, Y. Yue, J. Qiu. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci., 76, 154(2016).

    [28] B. Zhang, X. Liu, J. Qiu. Single femtosecond laser beam induced nanogratings in transparent media - mechanisms and applications. J. Materiomics, 5, 1(2019).

    [29] R. Drevinskas, P. G. Kazansky. High-performance geometric phase elements in silica glass. APL Photon., 2, 066104(2017).

    [30] Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao. Ultrafast manipulation of self-assembled form birefringence in glass. Adv. Mater., 22, 4039(2010).

    [31] M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, A. V. Kavokin. Exciton mediated self-organization in glass driven by ultrashort light pulses. Appl. Phys. Lett., 101, 053120(2012).

    [32] F. Zimmermann, A. Plech, S. Richter, A. Tunnermann, S. Nolte. On the rewriting of ultrashort pulse-induced nanogratings. Opt. Lett., 40, 2049(2015).

    [33] J. Gao, X.-J. Zha, Z. Yan, Y. Fu, J. Qiu, L. Wang, J. Zhang. Multi-dimensional shingled optical recording by nanostructuring in glass. Adv. Funct. Mater..

    [34] J. Gao, J. Zhang. Shingled sub-diffraction multi-dimensional optical data storage in glass. CLEO: Applicaions and Technology(2021).

    [35] A. Okhrimchuk, S. Fedotov, I. Glebov, V. Sigaev, P. Kazansky. Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses. Sci. Rep., 7, 16563(2017).

    [36] Z. Yan, P. Li, J. Gao, Y. Wang, L. Wang, M. Beresna, J. Zhang. Anisotropic nanostructure generated by a spatial-temporal manipulated picosecond pulse for multidimensional optical data storage. Opt. Lett., 46, 5485(2021).

    [37] Y. Lei, M. Sakakura, L. Wang, Y. Yu, H. Wang, G. Shayeganrad, P. G. Kazansky. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica, 8, 1365(2021).

    [38] Z. Yan, J. Gao, M. Beresna, J. Zhang. Near-field mediated 40 nm in-volume glass fabrication by femtosecond laser. Adv. Opt. Mater., 10, 2101676(2021).

    [39] M. Sakakura, Y. Lei, L. Wang, Y. H. Yu, P. G. Kazansky. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light-Sci. Appl., 9, 15(2020).

    [40] Y. Lei, G. Shayeganrad, H. Wang, M. Sakakura, Y. Yu, L. Wang, D. Kliukin, L. Skuja, Y. Svirko, P. G. Kazansky. Efficient ultrafast laser writing with elliptical polarization. Light-Sci. Appl., 12, 74(2023).

    [41] Y. Kobayashi, J. Abe. Recent advances in low-power-threshold nonlinear photochromic materials. Chem. Soc. Rev., 51, 2397(2022).

    [42] M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev., 114, 12174(2014).

    [43] M. Irie. Diarylethenes for memories and switches. Chem. Rev., 100, 1685(2000).

    [44] A. Bianco, S. Perissinotto, M. Garbugli, G. Lanzani, C. Bertarelli. Control of optical properties through photochromism: a promising approach to photonics. Laser Photon. Rev., 5, 711(2011).

    [45] S. Crespi, N. A. Simeth, B. König. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem., 3, 133(2019).

    [46] T. Buffeteau, F. L. Labarthet, M. Pézolet, C. Sourisseau. Dynamics of photoinduced orientation of nonpolar azobenzene groups in polymer films. Characterization of the Cis isomers by visible and FTIR spectroscopies. Macromolecules, 34, 7514(2001).

    [47] G. S. Hartley. The Cis-form of azobenzene. Nature, 140, 281(1937).

    [48] N. Campbell, A. W. Henderson, D. Taylor. 257. Geometrical isomerism of azo-compounds. J. Chem. Soc., 1281(1953).

    [49] T. Huang, K. H. Wagner. Photoanisotropic incoherent-to-coherent optical conversion. Appl. Opt., 32, 1888(1993).

    [50] P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, R. H. Berg. A remarkably efficient azobenzene peptide for holographic information storage. J. Am. Chem. Soc., 121, 4738(1999).

    [51] J. J. A. Couture, R. A. Lessard. Modulation transfer function measurements for thin layers of azo dyes in PVA matrix used as an optical recording material. Appl. Opt., 27, 3368(1988).

    [52] T. Todorov, L. Nikolova, N. Tomova. Polarization holography. 1: a new high-efficiency organic material with reversible photoinduced birefringence. Appl. Opt., 23, 4309(1984).

    [53] K. Tawa, K. Kamada, K. Ohta. Azo-dye-structure dependence of photoinduced anisotropy observed in PMMA films. J. Photochem. Photobiol. A, 134, 185(2000).

    [54] P. Vinh Phuc, G. Manivannan, R. A. Lessard, R. Pó. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media. Opt. Mater., 4, 467(1995).

    [55] P. Wu, X. Wu, L. Wang, J. Xu, B. Zou, X. Gong, W. Huang. Image storage based on biphotonic holography in azo/polymer system. Appl. Phys. Lett., 72, 418(1998).

    [56] X. Li, J. W. Chon, S. Wu, R. A. Evans, M. Gu. Rewritable polarization-encoded multilayer data storage in 2,5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer. Opt. Lett., 32, 277(2007).

    [57] R. Hagen, T. Bieringer. Photoaddressable polymers for optical data storage. Adv. Mater., 13, 1805(2001).

    [58] W. C. Xu, C. Liu, S. Liang, D. Zhang, Y. Liu, S. Wu. Designing rewritable dual-mode patterns using a stretchable photoresponsive polymer via orthogonal photopatterning. Adv. Mater., 34, e2202150(2022).

    [59] S. Alasfar, M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, M. Tsuchimori, O. Watanabe. Polarization-multiplexed optical memory with urethane-urea copolymers. Appl. Opt., 38, 6201(1999).

    [60] C. Liu, A. K. Steppert, Y. Liu, P. Weis, J. Hu, C. Nie, W. C. Xu, A. J. C. Kuehne, S. Wu. A photopatternable conjugated polymer with thermal-annealing-promoted interchain stacking for highly stable anti-counterfeiting materials. Adv. Mater., 35, 2303120(2023).

    [61] P. J. Shannon, W. M. Gibbons, S. T. Sun. Patterned optical properties in photopolymerized surface-aligned liquid-crystal films. Nature, 368, 532(1994).

    [62] W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, S. T. Sun. Continuous grey-scale image storage using optically aligned nematic liquid crystals. Nature, 377, 43(1995).

    [63] M. R. Lutfor, G. Hegde, S. Kumar, C. Tschierske, V. G. Chigrinov. Synthesis and characterization of bent-shaped azobenzene monomers: guest–host effects in liquid crystals with azo dyes for optical image storage devices. Opt. Mater., 32, 176(2009).

    [64] H. Gao, J. Liu, F. Gan, B. Ma. Investigation of multiple holographic recording in azo-dye-doped nematic liquid-crystal film. Appl. Opt., 48, 3014(2009).

    [65] A. G. Chen, D. J. Brady. Surface-stabilized holography in an azo-dye-doped liquid crystal. Opt. Lett., 17, 1231(1992).

    [66] A. I. Kovalchuk, Y. L. Kobzar, I. M. Tkachenko, Y. I. Kurioz, O. G. Tereshchenko, O. V. Shekera, V. G. Nazarenko, V. V. Shevchenko. “Photoactive fluorinated poly(azomethine)s with azo groups in the main chain for optical storage applications and controlling liquid crystal orientation. ACS Appl. Poly. Mater., 2, 455(2019).

    [67] M. Eich, J. H. Wendorff, B. Reck, H. Ringsdorf. “Reversible digital and holographic optical storage in polymeric liquid crystals. Makromol. Chem. Rapid. Commun., 8, 59(1987).

    [68] Z. Sekkat, M. Dumont. Photoassisted poling of azo dye doped polymeric films at room temperature. Appl. Phys. B Photophys. Laser Chem., 54, 486(1992).

    [69] E. R. Soulé. Thermodynamic model of phase transitions induced by cis-trans thermal- and photo-isomerization of azobenzenes. Chem. Phys. Lett., 794, 139503(2022).

    [70] Z. Zhang, W. Wang, P. Jin, J. Xue, L. Sun, J. Huang, J. Zhang, H. Tian. A building-block design for enhanced visible-light switching of diarylethenes. Nat. Commun., 10, 4232(2019).

    [71] A. Toriumi, S. Kawata, M. Gu. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt. Lett., 23, 1924(1998).

    [72] C. Zhang, H. P. Zhou, L. Y. Liao, W. Feng, W. Sun, Z. X. Li, C. H. Xu, C. J. Fang, L. D. Sun, Y. W. Zhang, C. H. Yan. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv. Mater., 22, 633(2010).

    [73] S. Luo, K. Chen, L. Cao, G. Liu, Q. He, G. Jin, D. Zeng, Y. Chen. Photochromic diarylethene for rewritable holographic data storage. Opt. Express, 13, 3123(2005).

    [74] S. Pu, T. Yang, B. Yao, Y. Wang, M. Lei, J. Xu. Photochromic diarylethene for polarization holographic optical recording. Mater. Lett., 61, 855(2007).

    [75] H. Chen, L. Shao, Q. Li, J. Wang. Gold nanorods and their plasmonic properties. Chem. Soc. Rev., 42, 2679(2013).

    [76] J. Zheng, X. Cheng, H. Zhang, X. Bai, R. Ai, L. Shao, J. Wang. Gold nanorods: the most versatile plasmonic nanoparticles. Chem. Rev., 121, 13342(2021).

    [77] M. Gu, Q. Zhang, S. Lamon. Nanomaterials for optical data storage. Nat. Rev. Mater., 1, 16070(2016).

    [78] C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 88, 077402(2002).

    [79] C. Novo, D. Gomez, J. Perez-Juste, Z. Zhang, H. Petrova, M. Reismann, P. Mulvaney, G. V. Hartland. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem. Phys., 8, 3540(2006).

    [80] H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, F. R. Aussenegg. Spectrally coded optical data storage by metal nanoparticles. Opt. Lett., 25, 563(2000).

    [81] S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J. Phys. Chem. B, 104, 6152(2000).

    [82] S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, C. R. C. Wang. The shape transition of gold nanorods. Langmuir, 15, 701(1999).

    [83] G. González-Rubio. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science, 358, 640(2017).

    [84] Y. Niidome, S. Urakawa, M. Kawahara, S. Yamada. Dichroism of poly-(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation. Jpn. J. Appl. Phys., 42, 1749(2003).

    [85] J. Pérez-Juste, B. Rodríguez-González, P. Mulvaney, L. M. Liz-Marzán. Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater., 15, 1065(2005).

    [86] P. Zijlstra, J. W. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 459, 410(2009).

    [87] X. Li, T. H. Lan, C. H. Tien, M. Gu. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun., 3, 998(2012).

    [88] Q. Zhang, Z. Xia, Y. B. Cheng, M. Gu. High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat. Commun., 9, 1183(2018).

    [89] J.-X. Li, Y. Xu, Q.-F. Dai, S. Lan, S.-L. Tie. Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling. Laser Photon. Rev., 10, 826(2016).

    [90] Q. Dai, M. Ouyang, W. Yuan, J. Li, B. Guo, S. Lan, S. Liu, Q. Zhang, G. Lu, S. Tie, H. Deng, Y. Xu, M. Gu. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory. Adv. Mater., 29, 1701918(2017).

    [91] Y. Chu, H. Xiao, G. Wang, J. Xiang, H. Fan, H. Liu, Z. Wei, S. Tie, S. Lan, Q. Dai. Randomly distributed plasmonic hot spots for multilevel optical storage. J. Phys. Chem. C, 122, 15652(2018).

    [92] M. Xian, Y. Xu, X. Ouyang, Y. Cao, S. Lan, X. Li. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci. Bull., 65, 2072(2020).

    [93] X. Ouyang, Y. Xu, M. Xian, Z. Feng, L. Zhu, Y. Cao, S. Lan, B.-O. Guan, C.-W. Qiu, M. Gu, X. Li. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics, 15, 901(2021).

    [94] H.-B. Sun, T. Tanaka, K. Takada, S. Kawata. Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett., 79, 1411(2001).

    [95] H.-B. Sun, S. Matsuo, H. Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett., 74, 786(1999).

    [96] M. Rumi, J. W. Perry. Two-photon absorption: an overview of measurements and principles. Adv. Opt. Photonics, 2, 451(2010).

    [97] A. Balena, M. Bianco, F. Pisanello, M. De Vittorio. Recent advances on high-speed and holographic two-photon direct laser writing. Adv. Funct. Mater., 33, 2211773(2023).

    [98] H.-B. Sun, S. Kawata. Two-photon photopolymerization and 3D lithographic microfabrication. NMR 3D Analysis Photopolymerization, 169(2006).

    [99] J. H. Strickler, W. W. Webb. Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt. Lett., 16, 1780(1991).

    [100] E. Walker, A. Dvornikov, K. Coblentz, P. Rentzepis. Terabyte recorded in two-photon 3D disk. Appl. Opt., 47, 4133(2008).

    [101] C. O. Yanez, C. D. Andrade, S. Yao, G. Luchita, M. V. Bondar, K. D. Belfield. Photosensitive polymeric materials for two-photon 3D WORM optical data storage systems. ACS Appl. Mater. Interfaces, 1, 2219(2009).

    [102] B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, J. W. Perry. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 398, 51(1999).

    [103] E. Walker, P. M. Rentzepis. A new dimension. Nat. Photonics, 2, 406(2008).

    [104] A. Royon, K. Bourhis, M. Bellec, G. Papon, B. Bousquet, Y. Deshayes, T. Cardinal, L. Canioni. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv. Mater., 22, 5282(2010).

    [105] X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu, Z. Xia, F. Fan, J. Qiu, G. Dong. Reversible 3D laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics, 14, 82(2019).

    [106] K. Sun, D. Tan, X. Fang, X. Xia, D. Lin, J. Song, Y. Lin, Z. Liu, M. Gu, Y. Yue, J. Qiu. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science, 375, 307(2022).

    [107] H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii. Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J. Phys. Chem. B, 104, 3450(2000).

    [108] M. Watanabe, H. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, H. Misawa. Three-dimensional optical data storage in vitreous silica. Jpn. J. Appl. Phys., 37, L1527(1998).

    [109] A. J. Silversmith, D. M. Boye, K. S. Brewer, C. E. Gillespie, Y. Lu, D. L. Campbell. 5D3 → 7FJ emission in terbium-doped sol–gel glasses. J. Lumin., 121, 14(2006).

    [110] M. Li, D. Yang, X. Huang, H. Zhang, Y. Zhao, B. Yin, Q. Pan, J. Kang, N. Zheng, X. Liu, J. Qiu, Z. Yang, G. Dong. Coupling localized laser writing and nonlocal recrystallization in perovskite crystals for reversible multidimensional optical encryption. Adv. Mater., 34, e2201413(2022).

    [111] Y. Petit, S. Danto, T. Guérineau, A. Abou Khalil, A. Le Camus, E. Fargin, G. Duchateau, J.-P. Bérubé, R. Vallée, Y. Messaddeq, T. Cardinal, L. Canioni. On the femtosecond laser-induced photochemistry in silver-containing oxide glasses: mechanisms, related optical and physico-chemical properties, and technological applications. Adv. Opt. Technol., 7, 291(2018).

    [112] G. Lakshminarayana, R. Yang, M. Mao, J. Qiu, I. V. Kityk. Photoluminescence of Sm3+, Dy3+, and Tm3+-doped transparent glass ceramics containing CaF2 nanocrystals. J. Non. Cryst. Solids, 355, 2668(2009).

    [113] K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi, K. Hirao. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions. Appl. Phys. Lett., 80, 2263(2002).

    [114] G. De Cremer, B. F. Sels, J. Hotta, M. B. Roeffaers, E. Bartholomeeusen, E. Coutino-Gonzalez, V. Valtchev, D. E. De Vos, T. Vosch, J. Hofkens. Optical encoding of silver zeolite microcarriers. Adv. Mater., 22, 957(2010).

    [115] C. H. Park, Y. Petit, L. Canioni, S. H. Park. Five-dimensional optical data storage based on ellipse orientation and fluorescence intensity in a silver-sensitized commercial glass. Micromachines, 11, 1026(2020).

    [116] Q. Chen, X. Huang, D. Yang, Y. Le, Q. Pan, M. Li, H. Zhang, J. Kang, X. Xiao, J. Qiu, Z. Yang, G. Dong. Three-dimensional laser writing aligned perovskite quantum dots in glass for polarization-sensitive anti-counterfeiting. Adv. Opt. Mater., 11, 2300090(2023).

    [117] X. Hu, P. Cebe, A. S. Weiss, F. Omenetto, D. L. Kaplan. Protein-based composite materials. Mater. Today, 15, 208(2012).

    [118] C. D. Bostick, S. Mukhopadhyay, I. Pecht, M. Sheves, D. Cahen, D. Lederman. Protein bioelectronics: a review of what we do and do not know. Rep. Prog. Phys., 81, 026601(2018).

    [119] S. S. Panda, H. E. Katz, J. D. Tovar. Solid-state electrical applications of protein and peptide based nanomaterials. Chem. Soc. Rev., 47, 3640(2018).

    [120] C. Wang, K. Xia, Y. Zhang, D. L. Kaplan. Silk-based advanced materials for soft electronics. Acc. Chem. Res., 52, 2916(2019).

    [121] G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev., 46, 4661(2017).

    [122] J. Tallent, Q. W. Song, Z. Li, J. Stuart, R. R. Birge. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films. Opt. Lett., 21, 1339(1996).

    [123] V. Adam, H. Mizuno, A. Grichine, J.-I. Hotta, Y. Yamagata, B. Moeyaert, G. U. Nienhaus, A. Miyawaki, D. Bourgeois, J. Hofkens. Data storage based on photochromic and photoconvertible fluorescent proteins. J. Biotechnol., 149, 289(2010).

    [124] M. Andresen, M. C. Wahl, A. C. Stiel, F. Gräter, L. V. Schäfer, S. Trowitzsch, G. Weber, C. Eggeling, H. Grubmüller, S. W. Hell, S. Jakobs. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc. Natl. Acad. Sci. USA, 102, 13070(2005).

    [125] C. Zhang, J. Shang, W. Xue, H. Tan, L. Pan, X. Yang, S. Guo, J. Hao, G. Liu, R.-W. Li. Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun., 52, 4828(2016).

    [126] J. Wang, F. Qian, S. Huang, Z. Lv, Y. Wang, X. Xing, M. Chen, S.-T. Han, Y. Zhou. Recent progress of protein-based data storage and neuromorphic devices. Adv. Intell. Syst., 3, 2000180(2020).

    [127] W. Lee, Z. Zhou, X. Chen, N. Qin, J. Jiang, K. Liu, M. Liu, T. H. Tao, W. Li. A rewritable optical storage medium of silk proteins using near-field nano-optics. Nat. Nanotechnol., 15, 941(2020).

    [128] A. S. van de Nes, J. J. M. Braat, S. F. Pereira. High-density optical data storage. Rep. Prog. Phys., 69, 2323(2006).

    [129] J. Wei. On the dynamic readout characteristic of nonlinear super-resolution optical storage. Opt. Commun., 291, 143(2013).

    [130] W. Liu, Z. Zhou, S. Zhang, Z. Shi, J. Tabarini, W. Lee, Y. Zhang, S. N. Gilbert Corder, X. Li, F. Dong, L. Cheng, M. Liu, D. L. Kaplan, F. G. Omenetto, G. Zhang, Y. Mao, T. H. Tao. Precise protein photolithography (P3): high performance biopatterning using silk fibroin light chain as the resist. Adv. Sci., 4, 1700191(2017).

    [131] M. Hofmann, C. Eggeling, S. Jakobs, S. W. Hell. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. USA, 102, 17565(2005).

    [132] S. Lamon, Y. Wu, Q. Zhang, X. Liu, M. Gu. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv., 7, 2209(2021).

    [133] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780(1994).

    [134] Y. Xu, H. Zhang, N. Zhang, X. Wang, D. Dang, X. Jing, D. Xi, Y. Hao, B. Z. Tang, L. Meng. Deep-red fluorescent organic nanoparticles with high brightness and photostability for super-resolution in vitro and in vivo imaging using STED nanoscopy. ACS Appl. Mater. Interfaces, 12, 6814(2020).

    [135] T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban, F. Lavoie-Cardinal, K. I. Willig, C. Eggeling, S. Jakobs, S. W. Hell. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature, 478, 204(2011).

    [136] X. Li, Y. Cao, N. Tian, L. Fu, M. Gu. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate. Optica, 2, 567(2015).

    [137] S. S. Fedotov, A. G. Okhrimchuk, A. S. Lipatiev, A. A. Stepko, K. I. Piyanzina, G. Y. Shakhgildyan, M. Y. Presniakov, I. S. Glebov, S. V. Lotarev, V. N. Sigaev. 3-bit writing of information in nanoporous glass by a single sub-microsecond burst of femtosecond pulses. Opt. Lett., 43, 851(2018).

    [138] Z. Wang, D. Tan, J. Qiu. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt. Lett., 45, 6274(2020).

    [139] W. Chen, Z. Yan, J. Tian, S. Liu, J. Gao, J. Zhang. Flexible four-dimensional optical data storage enabled by single-pulse femtosecond laser irradiation in thermoplastic polyurethane. Opt. Lett., 46, 3211(2021).

    [140] L. Gao, Q. Zhang, R. A. Evans, M. Gu. 4D ultra-high-density long data storage supported by a solid-state optically active polymeric material with high thermal stability. Adv. Opt. Mater., 9, 2100487(2021).

    [141] S. Lin, H. Lin, C. Ma, Y. Cheng, S. Ye, F. Lin, R. Li, J. Xu, Y. Wang. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8:Mn2+ with photostimulated luminescence. Light-Sci. Appl., 9, 22(2020).

    [142] C. Ryan, C. W. Christenson, B. Valle, A. Saini, J. Lott, J. Johnson, D. Schiraldi, C. Weder, E. Baer, K. D. Singer, J. Shan. Roll-to-roll fabrication of multilayer films for high capacity optical data storage. Adv. Mater., 24, 5222(2012).

    [143] D. M. Krol. Femtosecond laser modification of glass. J. Non. Cryst. Solids, 354, 416(2008).

    [144] T. Watanabe, M. Shiozawa, E. Tatsu, S. Kimura, M. Umeda, T. Mine, Y. Shimotsuma, M. Sakakura, M. Nakabayashi, K. Miura, K. Watanabe. A driveless read system for permanently recorded data in fused silica. Jpn. J. Appl. Phys., 52, 09LA02(2013).

    [145]

    [146] S. Lamon, Q. Zhang, M. Gu. Nanophotonics-enabled optical data storage in the age of machine learning. APL Photon., 6, 110902(2021).

    [147] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol., 14, 237(2019).

    [148]

    [149]

    Zhi Yan, Jingqi Hu, Zhexiang Xiao, Dale Xie, Qiang Cao, Zongsong Gan, Jingyu Zhang. Decoding the future: opportunities and challenges in next-generation optical data storage [Invited][J]. Chinese Optics Letters, 2023, 21(12): 120051
    Download Citation