• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 150101 (2020)
Baiwei Xu1、2、3, Shijie Hu1、3、*, Jie Li3, Junqi Fan1、3, and Yi Tan1、3
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • show less
    DOI: 10.3788/LOP57.150101 Cite this Article Set citation alerts
    Baiwei Xu, Shijie Hu, Jie Li, Junqi Fan, Yi Tan. Impact of Polarization Chromatic Aberration on Adaptive Optical Systems[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150101 Copy Citation Text show less
    References

    [1] Chipman R A. Polarization aberrations[M]. Tucson: University of Arizona(1987).

    [2] Washburne T P, Konopnicki M T, Miller T D. Far-field diffraction effects of large aperture laser systems due to polarization effects caused by multilayer dielectric mirror coatings[J]. Proceedings of SPIE, 1166, 340-345(1990).

    [3] Tiffany L W S, Chipman R. Balancing polarization aberrations in crossed fold mirrors[J]. Applied Optics, 54, 3236(2015).

    [4] Daniel J, Chipman R A. Coating-induced wavefront aberrations[J]. Proceedings of SPIE, 1746, 139-146(1992).

    [5] Breckinridge J B. Lam W S T, Chipman R A. Polarization aberrations in astronomical telescopes: the point spread function[J]. Publications of the Astronomical Society of the Pacific, 127, 445-468(2015).

    [6] Bernd G, Johannes R, Jörg Z et al. The impact of projection lens polarization properties on lithographic process at hyper-NA[J]. Proceedings of SPIE, 6520, 65200F(2007).

    [7] James P, Chipman R A. Polarization aberrations in optical systems[J]. Proceedings of SPIE, 0818, 240-257(1987).

    [8] Rui D M, Liu C, Chen M et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 45, 170647(2018).

    [9] Yang H Z, Li X Y, Jiang W H. Applications of adaptive optics technology in atmospheric laser communications system[J]. Laser & Optoelectronics Progress, 44, 61-68(2007).

    [10] Ma X P, Sun J F, Hou P P et al. Research progress on overcoming the atmospheric turbulence effect in satellite-to-ground laser communication[J]. Laser & Optoelectronics Progress, 51, 120002(2014).

    [11] Zhang Y, Li L, Huang Y F. Polarization aberration analysis of optical systems[J]. Optical Technique, 31, 202-205, 207(2005).

    [12] Zhou Y, Li Y Q, Liu G C. Study on pellicle optimization and polarization aberration induced by pellicle in hyper numerical aperture lithography[J]. Chinese Journal of Lasers, 38, 0407001(2011).

    [13] Totzeck M. Polarization influence on imaging[J]. Nanolithography, MEMS, and MOEMS, 4, 031108(2005).

    [14] Norihiro Y, Kye J, Harry J. Polarization aberration analysis using Pauli-Zernike representation[J]. Proceedings of SPIE, 6520, 65200Y(2007).

    [15] Totzeck M. Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems[J]. Nanolithography, MEMS, and MOEMS, 8, 031404(2009).

    [16] Johannes R, Michael T. Using orientation Zernike polynomials to predict the imaging performance of optical systems with birefringent and partly polarizing components[J]. Proceedings of SPIE, 7652, 76521T(2010).

    [17] Xu X R, Huang W, Xu M F. Orthogonal polynomials describing polarization aberration for rotationally symmetric optical systems[J]. Optics Express, 23, 27911(2015).

    Baiwei Xu, Shijie Hu, Jie Li, Junqi Fan, Yi Tan. Impact of Polarization Chromatic Aberration on Adaptive Optical Systems[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150101
    Download Citation