• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 150101 (2020)
Baiwei Xu1、2、3, Shijie Hu1、3、*, Jie Li3, Junqi Fan1、3, and Yi Tan1、3
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
  • show less
    DOI: 10.3788/LOP57.150101 Cite this Article Set citation alerts
    Baiwei Xu, Shijie Hu, Jie Li, Junqi Fan, Yi Tan. Impact of Polarization Chromatic Aberration on Adaptive Optical Systems[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150101 Copy Citation Text show less
    Reflectance of optical film versus wavelength
    Fig. 1. Reflectance of optical film versus wavelength
    Curves of reflectance and reflection phase of s-light and p-light at wavelength of 1319 nm. (a) Reflectance; (b) reflection phase
    Fig. 2. Curves of reflectance and reflection phase of s-light and p-light at wavelength of 1319 nm. (a) Reflectance; (b) reflection phase
    Example of optical system
    Fig. 3. Example of optical system
    Jones pupil of the system without polarization. (a) Amplitude of the Jones pupil; (b) phase of the Jones pupil
    Fig. 4. Jones pupil of the system without polarization. (a) Amplitude of the Jones pupil; (b) phase of the Jones pupil
    Jones pupil of optical system with the multilayer films in Fig.1 at 1319 nm. (a) Amplitude of the Jones pupil; (b) phase of the Jones pupil
    Fig. 5. Jones pupil of optical system with the multilayer films in Fig.1 at 1319 nm. (a) Amplitude of the Jones pupil; (b) phase of the Jones pupil
    Results of SVD method at 1319 nm. (a) Scalar transmissivity; (b) wavefront phase; (c) diattenuation; (d) rotation; (e) retardance
    Fig. 6. Results of SVD method at 1319 nm. (a) Scalar transmissivity; (b) wavefront phase; (c) diattenuation; (d) rotation; (e) retardance
    Results of SVD method at 589 nm. (a) Scalar transmissivity; (b) wavefront phase; (c) diattenuation; (d) rotation; (e) retardance
    Fig. 7. Results of SVD method at 589 nm. (a) Scalar transmissivity; (b) wavefront phase; (c) diattenuation; (d) rotation; (e) retardance
    Comparison of Zernike coefficients at 1319 nm and 589 nm
    Fig. 8. Comparison of Zernike coefficients at 1319 nm and 589 nm
    Far field images of wavefront. (a) Far field image of Fig.7 (b) at 589 nm; (b) far field image of Fig.6 (b) at 1319 nm
    Fig. 9. Far field images of wavefront. (a) Far field image of Fig.7 (b) at 589 nm; (b) far field image of Fig.6 (b) at 1319 nm
    Corrected far field image
    Fig. 10. Corrected far field image
    Items of system structureParameter
    Microlens array12×12
    Shape of microlensSquare
    Focal length of microlens /mm125
    Sub-aperture size /(mm×mm)1×1
    Pixel size /(μm·pixel-1)20
    Number of pixels in a singlesub-aperture /(pixel×pixel)20×20
    Fitting order35
    Table 1. Structure parameters of HS
    Baiwei Xu, Shijie Hu, Jie Li, Junqi Fan, Yi Tan. Impact of Polarization Chromatic Aberration on Adaptive Optical Systems[J]. Laser & Optoelectronics Progress, 2020, 57(15): 150101
    Download Citation