• Journal of Inorganic Materials
  • Vol. 37, Issue 8, 853 (2022)
Ye ZHANG1、2 and Yuping ZENG1、*
Author Affiliations
  • 11. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • 22. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.15541/jim20220019 Cite this Article
    Ye ZHANG, Yuping ZENG. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853 Copy Citation Text show less
    References

    [1] W D WANG, D X YAO, H B CHEN et al. ZrSi2-MgO as novel additives for high thermal conductivity of β-Si3N4 ceramics. J. Am. Ceram. Soc, 2090-2100(2020).

    [2] W WANG, D YAO, H LIANG et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics. J. Eur. Ceram. Soc, 5316-5323(2020).

    [3] W WANG, D YAO, H LIANG et al. Effect of the binary nonoxide additives on the densification behavior and thermal conductivity of Si3N4 ceramics. J. Am. Ceram. Soc, 5891-5899(2020).

    [4] W WANG, D YAO, H LIANG et al. Novel silicothermic reduction method to obtain Si3N4 ceramics with enhanced thermal conductivity and fracture toughness. J. Eur. Ceram. Soc, 1735-1738(2021).

    [5] P F BECHER, G S PAINTER, N SHIBATA et al. Effects of rare- earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE2O3 + MgO additives: RE=La, Gd, and Lu. J. Am. Ceram. Soc, 2328-2336(2008).

    [6] P TATARKO, M KAŠIAROVA, J DUSZA et al. Influence of rare- earth oxide additives on the oxidation resistance of Si3N4-SiC nanocomposites. J. Eur. Ceram. Soc, 2259-2268(2013).

    [7] T ROUXEL, J C SANGLEBOEUF, M HUGER et al. Temperature dependence of Young's modulus in Si3N4-based ceramics: roles of sintering additives and of SiC-particle content. Acta Mater, 1669-1682(2002).

    [8] X Q LI, D X YAO, K H ZUO et al. Fabrication, microstructural characterization and gas permeability behavior of porous silicon nitride ceramics with controllable pore structures. J. Eur. Ceram. Soc, 2855-2861(2019).

    [9] X Q LI, D X YAO, K H ZUO et al. Microstructure and gas permeation performance of porous silicon nitride ceramics with unidirectionally aligned channels. J. Am. Ceram. Soc, 6565-6574(2020).

    [10] Y F XIA, Y P ZENG, D L JIANG. Mechanical and dielectric properties of porous Si3N4 ceramics using PMMA as pore former. Ceram. Int, 3775-3779(2011).

    [11] N PRADEILLES, M C RECORD, D GRANIER et al. Synthesis of β-SiAlON: a combined method using Sol-Gel and SHS processes. Ceram. Int, 1189-1194(2008).

    [12] H M JENNINGS, M H RICHMAN. Structure, formation mechanisms and kinetics of reaction-bonded silicon-nitride. J. Mater. Sci, 2087-2098(1976).

    [13] G ZIEGLER, J HEINRICH, G WOTTING. Relationships between processing, microstructure and properties of dense and reaction- bonded silicon-nitride. J. Mater. Sci, 3041-3086(1987).

    [14] C MATSUNAGA, Y ZHOU, D KUSANO et al. Nitridation behavior of silicon powder compacts of various thicknesses with Y2O3 and MgO as sintering additives. Int. J. Appl. Ceram, 1157-1163(2017).

    [15] S Y SHAN, J F YANG, J Q GAO et al. Porous silicon nitride ceramics prepared by reduction-nitridation of silica. J. Am. Ceram. Soc, 2594-2596(2005).

    [16] J F YANG, S Y SHAN, R JANSSEN et al. Synthesis of fibrous β-Si3N4 structured porous ceramics using carbothermal nitridation of silica. Acta Mater, 2981-2990(2005).

    [17] Q ZHI, B WANG, S ZHAO et al. Synthesis and mechanical properties of highly porous ultrafine-grain Si3N4 ceramics via carbothermal reduction-nitridation combined with liquid phase sintering. Ceram. Int, 21359-21364(2019).

    [18] Z A MUNIR, J B HOLT. The combustion synthesis of refractory nitrides. J. Mater. Sci, 710-714(1987).

    [19] Z ZAKI, N MOSTAFA, Y AHMED et al. Processing of high- density magnesia spinel electro-conducting ceramic composite and its oxidation at 1400 ℃. Int. J. Appl. Ceram, 662-669(2016).

    [20] S ADACHI, T WADA, T MIHARA et al. High-pressure self- combustion sintering of alumina titanium carbide ceramic composite. J. Am. Ceram. Soc, 1451-1452(1990).

    [21] S K BHAUMIK, C DIVAKAR, A K SINGH et al. Synthesis and sintering of TiB2 and TiB2-TiC composite under high pressure. Mater. Sci. Eng., A, 275-281(2000).

    [22] S K BHAUMIK, C DIVAKAR, S U DEVI et al. Synthesis and sintering of SiC under high pressure and high temperature. J. Mater. Res, 906-911(1999).

    [24] A CINCOTTI, R LICHERI, A M LOCCI et al. A review on combustion synthesis of novel materials: recent experimental and modeling results. J. Chem. Technol. Biotechnol, 122-127(2003).

    [25] Z B TIAN, J ZHANG, S Y SUN et al. Combustion synthesis of α-Si3N4 with the addition of NH4Cl. Ceram. Int, 20591-20594(2018).

    [26] Y Y GE, S Y SUN, Q WANG et al. Effect of Fe-contained species on the preparation of α-Si3N4 fibers in combustion synthesis. J. Am. Ceram. Soc, 1464-1471(2016).

    [27] X M WU, G H LIU, J Q LI et al. Combustion synthesis of ZrN and AlN using Si3N4 and BN as solid nitrogen sources. Ceram. Int, 11914-11917(2018).

    [28] A HIRANAKA, X YI, G SAITO et al. Effects of Al particle size and nitrogen pressure on AlN combustion synthesis. Ceram. Int, 9872-9876(2017).

    [29] M SHAHIEN, M RADWAN, S KIRIHARA et al. Combustion synthesis of single-phase β-SiAlONs (z=2-4). J. Eur. Ceram. Soc, 1925-1930(2010).

    [30] Q WANG, Y Y GE, Y CHEN et al. SHS of Eu2+-doped β-SiAlON phosphors: impacts of N2 pressure and Si particle size. Ceram. Int, 4456-4461(2017).

    [31] J K XU, Z L HU, Y HAN et al. Combustion synthesis of MgSiN2 powders and Si3N4-MgSiN2 composite powders: effects of processing parameters. J. Am. Ceram. Soc, 122-135(2020).

    [32] W CUI, Y ZHU, Y Y GE et al. Effects of nitrogen pressure and diluent content on the morphology of gel-cast-foam-assisted combustion synthesis of elongated β-Si3N4 particles. Ceram. Int, 12553-12560(2014).

    [33] I G CANO, I P BOROVINSKAYA, M A RODRIGUEZ et al. Effect of dilution and porosity on self-propagating high-temperature synthesis of silicon nitride. J. Am. Ceram. Soc, 2209-2211(2002).

    [34] J H YANG, L S HAN, Y X CHEN et al. Effects of pelletization of reactants and diluents on the combustion synthesis of Si3N4 powder. J. Alloys Compd, 81-84(2012).

    [35] H I WON, C W WON, H H NERSISYAN et al. Salt-assisted combustion synthesis of silicon nitride with high α-phase content. J. Alloys Compd, 656-659(2010).

    [36] Y X CHEN, J T LI, J S DU. Cost effective combustion synthesis of silicon nitride. Mater. Res. Bull, 1598-1606(2008).

    [37] I G CANO, S P BAELO, M A RODRIGUEZ et al. Self-propagating high temperature-synthesis of Si3N4: role of ammonium salt addition. J. Eur. Ceram. Soc, 291-295(2001).

    [38] D Y CHEN, B L ZHANG, H R ZHUANG et al. Synthesis of β-Si3N4 whiskers by SHS. Mater. Res. Bull, 1481-1485(2002).

    [39] G H PENG, G J JIANG, H R ZHUANG et al. Fabrication of β-Si3N4 whiskers by combustion synthesis with MgSiN2 as additives. Mater. Res. Bull, 2139-2143(2005).

    [40] R GERMAN, P SURI, S PARK. Review: liquid phase sintering. J. Mater. Sci, 1-39(2009).

    [41] Z KRSTIC, V D KRSTIC. Silicon nitride: the engineering material of the future. J. Mater. Sci, 535-552(2011).

    [42] A ZIEGLER, J C IDROBO, M K CINIBULK et al. Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science, 1768-1770(2004).

    [43] N SHIBATA, S J PENNYCOOK, T R GOSNELL et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature, 730-733(2004).

    [44] D CHEN, B ZHANG, H ZHUANG et al. Combustion synthesis of network silicon nitride porous ceramics. Ceram. Int, 363-364(2003).

    [45] W K LI, D Y CHEN, B L ZHANG et al. Effect of rare-earth oxide additives on the morphology of combustion synthesized rod-like β-Si3N4crystals. Mater. Lett, 2322-2325(2004).

    [46] Y ZHANG, D YAO, K ZUO et al. Effects of N2 pressure and Si particle size on mechanical properties of porous Si3N4 ceramics prepared via SHS. J. Eur. Ceram. Soc, 4454-4461(2020).

    [47] Y ZHANG, D YAO, K ZUO et al. Fabrication and mechanical properties of porous Si3N4 ceramics prepared via SHS. Ceram. Int, 14867-14872(2019).

    [48] L WANG, G HE, Z YANG et al. Combustion synthesis of high flexural strength, low linear shrinkage and machinable porous β-Si3N4 ceramics. J. Eur. Ceram. Soc, 2395-2399(2020).

    [49] Y G CAO, C C EG, Z J ZHOU et al. Combustion synthesis of α-Si3N4 whiskers. J. Mater. Res, 876-880(1999).

    [50] T WAKIHARA, H YABUKI, J TATAMI et al. In situ measurement of shrinkage during postreaction sintering of reaction-bonded silicon nitride. J. Am. Ceram. Soc, 3413-3415(2008).

    [51] C WANG, R Q QIAO, L J CHEN. Fabrication and erosion resistance of dense α-Si3N4/SiAlON coating on porous Si3N4 ceramic. RSC Adv, 63801-63808(2016).

    [52] J S LEE, J H MUN, B D HAN et al. Effect of raw-Si particle size on the properties of sintered reaction-bonded silicon nitride. Ceram. Int, 965-976(2004).

    [53] M KRAMER, M J HOFFMANN, G PETZOW. Grain-growth studies of silicon-nitride dispersed in an oxynitride glass. J. Am. Ceram. Soc, 2778-2784(1993).

    [54] S L CHEN, L WANG, G HE et al. Microstructure and properties of porous Si3N4 ceramics by gelcasting-self-propagating high- temperature synthesis (SHS). J. Adv. Ceram, 172-183(2021).

    [55] Y ZHANG, D YAO, K ZUO et al. A novel route for the fabrication of porous Si3N4 ceramics with unidirectionally aligned channels. Mater. Lett, 128246(2020).

    [56] Y ZHANG, D YAO, K ZUO et al. Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics. Ceram. Int, 22461-22467(2021).

    [57] A A GRIFFITH. The phenomena of rupture and flow in solids. Philos. Trans. Royal Soc, 163-198(1920).

    [58] H DING, Y HU, X LI et al. Microstructure, mechanical properties and sintering mechanism of pressureless-sintered porous Si3N4 ceramics with YbF3-MgF2 composite sintering aids. Ceram. Int, 2558-2564(2020).

    [59] Y ZHANG, D YAO, K ZUO et al. Self-propagating high temperature synthesis (SHS) of porous Si3N4-based ceramics with considerable dimensions and study on mechanical properties and oxidation behavior. J. Eur. Ceram. Soc, 4452-4461(2021).

    [60] Y HU, K ZUO, Y XIA et al. Microstructure and permeability of porous Si3N4 supports prepared via SHS. Ceram. Int, 1571-1577(2021).

    [61] C KAWAI. Effect of grain size distribution on the strength of porous Si3N4 ceramics composed of elongated β-Si3N4 grains. J. Mater. Sci, 5713-5717(2001).

    [62] Y ZHANG, X YU, H GU et al. Microstructure evolution and high-temperature mechanical properties of porous Si3N4 ceramics prepared by SHS with a small amount of Y2O3 addition. Ceram. Int, 5656-5662(2021).

    [63] F L YU, H R WANG, J F YANG et al. Effects of organic additives on microstructure and mechanical properties of porous Si3N4 ceramics. Bull. Mater. Sci, 285-291(2010).

    [64] A KALEMTAS, G TOPATES, H OZCOBAN et al. Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering & starch addition. J. Eur. Ceram. Soc, 1507-1515(2013).

    [65] C KAWAI, A YAMAKAWA. Effect of porosity and microstructure on the strength of Si3N4: designed microstructure for high strength, high thermal shock resistance, and facile machining. J. Am. Ceram. Soc, 2705-2708(1997).

    [66] J F YANG, Z Y DENG, T OHJI. Fabrication and characterisation of porous silicon nitride ceramics using Yb2O3 as sintering additive. J. Eur. Ceram. Soc, 371-378(2003).

    [67] X W YIN, X M LI, L T ZHANG et al. Microstructure and mechanical properties of Lu2O3-doped porous silicon nitride ceramics using phenolic resin as pore-forming agent. Int. J. Appl. Ceram, 391-399(2010).

    [68] X M LI, X W YIN, L T ZHANG et al. Microstructure and properties of porous Si3N4 ceramics with a dense surface. Int. J. Appl. Ceram, 627-636(2011).

    [69] J S YUE, B C DONG, H J WANG. Porous Si3N4 fabricated by phase separation method using benzoic acid as pore-forming agent. J. Am. Ceram. Soc, 1989-1991(2011).

    [70] H H DING, Z H ZHAO, T QI et al. High α-β phase transition and properties of YbF3-added porous Si3N4 ceramics obtained by low temperature pressureless sintering. Int. J. Refract. Hard. Met, 131-137(2019).

    [71] G P JIANG, J F YANG, J Q GAO et al. Porous silicon nitride ceramics prepared by extrusion using starch as binder. J. Am. Ceram. Soc, 3510-3516(2008).

    [72] X H LIU, Z Y HUANG, Q M GE et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive. J. Eur. Ceram. Soc, 3353-3359(2005).

    [73] J YANG, J F YANG, S Y SHAN et al. Effect of sintering additives on microstructure and mechanical properties of porous silicon nitride ceramics. J. Am. Ceram. Soc, 3843-3845(2006).

    [74] L FAN, M ZHOU, H J WANG et al. Low-temperature preparation of β-Si3N4 porous ceramics with a small amount of Li2O-Y2O3. J. Am. Ceram. Soc, 1371-1374(2014).

    [75] D YAO, H CHEN, K H ZUO et al. High temperature mechanical properties of porous Si3N4 prepared via SRBSN. Ceram. Int, 11966-11971(2018).

    [76] D X YAO, Y F XIA, Y P ZENG et al. Porous Si3N4 ceramics prepared via slip casting of Si and reaction bonded silicon nitride. Ceram. Int, 3071-3076(2011).

    [77] D X YAO, Y F XIA, K H ZUO et al. The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics. J. Eur. Ceram. Soc, 3461-3467(2014).

    [78] D X YAO, Y P ZENG. High flexural strength porous silicon nitride prepared via nitridation of silicon powder. J. Inorg. Mater, 422-426(2011).

    [79] D X YAO, Y P ZENG, K H ZUO et al. The effects of BN addition on the mechanical properties of porous Si3N4/BN ceramics prepared via nitridation of silicon powder. J. Am. Ceram. Soc, 666-670(2011).

    [80] D X YAO, Y P ZENG, K H ZUO et al. Porous Si3N4 ceramics prepared via nitridation of Si powder with Si3N4 Filler and postsintering. Int. J. Appl. Ceram, 239-245(2012).

    [81] H L HU, D X YAO, Y F XIA et al. Porous Si3N4/SiC ceramics prepared via nitridation of Si powder with SiC addition. Int. J. Appl. Ceram, 845-850(2014).

    [82] H L HU, Y P ZENG, K H ZUO et al. Synthesis of porous Si3N4/SiC ceramics with rapid nitridation of silicon. J. Eur. Ceram. Soc, 3781-3787(2015).

    [83] H L HU, Y P ZENG, Y F XIA et al. Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst. Ceram. Int, 7579-7582(2014).

    [84] Y LU, J F YANG, W Z LU et al. Porous silicon nitride ceramics fabricated by carbothermal reduction-reaction bonding. Mater. Manuf. Processes, 855-861(2011).

    [85] S Y SHAN, Q M JIA, L H JIANG et al. Microstructure control and mechanical properties of porous silicon nitride ceramics. Ceram. Int, 3371-3374(2009).

    [86] S Y SHAN, J F YANG, J Q GAO et al. Fabrication of porous silicon nitride with high porosity. Key Eng. Mater, 1105-1108(2007).

    [87] H H LU, J L HUANG. Effect of Y2O3 and Yb2O3 on the microstructure and mechanical properties of silicon nitride. Ceram. Int, 621-628(2001).

    [88] H KLEMM, G PEZZOTTI. Fracture toughness and time-dependent strength behavior of low-doped silicon nitrides for applications at 1400 ℃. J. Am. Ceram. Soc, 553-561(1994).

    [89] F F LANGE. High-temperature strength behavior of hot-pressed Si3N4: evidence for subcritical crack growth. J. Am. Ceram. Soc, 84-87(1974).

    [90] F L RILEY. Silicon nitride and related materials. J. Am. Ceram. Soc, 245-265(2000).

    Ye ZHANG, Yuping ZENG. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853
    Download Citation