• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2300002 (2021)
Younan Li1、2, Xiaozheng Liu3, Zitao Wang2, Haitao Zhang4、*, and Weiwei Wu2、**
Author Affiliations
  • 1School of Clinical Medicine, Tsinghua University, Beijing 100084, China
  • 2Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
  • 3School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 4Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/LOP202158.2300002 Cite this Article Set citation alerts
    Younan Li, Xiaozheng Liu, Zitao Wang, Haitao Zhang, Weiwei Wu. Application of Laser Technology in Endovascular Imaging and Therapy[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2300002 Copy Citation Text show less
    References

    [1] Guan S, Li X S, Liu J et al. Application of laser technology in vascular surgery[J]. Foreign Medical Sciences Surgery Section, 391-393(2005).

    [2] Stanek F. Laser angioplasty of peripheral arteries: basic principles, current clinical studies, and future directions[J]. Diagnostic and Interventional Radiology, 25, 392-397(2019).

    [3] Gu Y. Laser medicine[J]. Physics, 39, 515-521(2010).

    [4] Qiu H X, Li B H, Ma H et al. Medical application and industrial development strategy of laser technology in China[J]. Strategic Study of CAE, 22, 14-20(2020).

    [5] Rawlins J, Talwar S, O’Kane P. Optical coherence tomography for assessment of percutaneous coronary intervention with excimer laser coronary atherectomy[M]. Topaz O. Lasers in cardiovascular interventions, 103-123(2015).

    [6] Yao W T, Gao W R. Development and application of endoscopic optical coherence tomography[J]. Laser & Optoelectronics Progress, 55, 070002(2018).

    [7] Jia Y Q, Liang Y M, Wang M W et al. High resolution optical coherence tomography using femtosecond Ti∶Al2O3 laser[J]. Journal of Optoelectronics·Laser, 16, 409-412(2005).

    [8] Wang T S, Pfeiffer T, Regar E et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography[J]. Biomedical Optics Express, 6, 5021-5032(2015).

    [9] Unterhuber A, Povazay B, Hermann B et al. Compact, low-cost Ti∶Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 28, 905-907(2003).

    [10] Zhu S, Liu Y B, Tong D D et al. Assessment and guidance of microvascular anastomosis using the real-time, 3D Fourier spectral domain optical coherence tomography[J]. Chinese Journal of Microsurgery, 39, 263-268(2016).

    [11] He D H, Li Z L, Nan N et al. A probe driven by miniature propeller for intravascular optical coherence tomography[J]. Chinese Journal of Lasers, 47, 1107002(2020).

    [12] Guo J H, Li Y, Liu Z M et al. Methods and algorithms of OCTA[J]. Acta Laser Biology Sinica, 29, 385-391(2020).

    [13] Ughi G J, Wang H, Gerbaud E et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J]. JACC: Cardiovascular Imaging, 9, 1304-1314(2016).

    [14] Matthäus C, Dochow S, Egodage K D et al. Detection and characterization of early plaque formations by Raman probe spectroscopy and optical coherence tomography: an in vivo study on a rabbit model[J]. Journal of Biomedical Optics, 23, 015004(2018).

    [15] Zhang R L, Li H, Wu Y H et al. Identification of human coronary atherosclerotic plaques using spectrum- and time-resolved multiphoton microscopy[J]. Chinese Journal of Lasers, 47, 0207025(2020).

    [16] Sun Z, Ma X Q. Progresses of combined intravascular ultrasound and photoacoustic imaging technique[J]. Chinese Journal of Medical Imaging Technology, 32, 979-982(2016).

    [17] Li C, Sun M J, Ma L Y et al. Algorithm for three-dimensional enhancement of blood vessels in photoacoustic endoscopic in vivo imaging[J]. Chinese Journal of Lasers, 47, 0907003(2020).

    [18] Jiang H P, Zhang K J, Yuan B et al. A vascular enhancement algorithm for endoscope image[J]. Opto-Electronic Engineering, 46, 31-39(2019).

    [19] Gono K. Narrow band imaging: technology basis and research and development history[J]. Clinical Endoscopy, 48, 476-480(2015).

    [20] Togashi K, Osawa H, Koinuma K et al. A comparison of conventional endoscopy, chromoendoscopy, and the optimal-band imaging system for the differentiation of neoplastic and non-neoplastic colonic polyps[J]. Gastrointestinal Endoscopy, 69, 734-741(2009).

    [21] Okuhata H, Nakamura H, Hara S et al. Application of the real-time Retinex image enhancement for endoscopic images[C], 3407-3410(2013).

    [22] Gopi V P, Palanisamy P. Capsule endoscopic image denoising based on double density dual tree complex wavelet transform[J]. International Journal of Imaging and Robotics, 9, 48-60(2012).

    [23] Sun Z D, Song Y E, Lin D M et al. Laser vascular anastomosis[J]. Laser Journal, 20, 3-5(1999).

    [24] Yin H C, Bai P L, Han K et al. Progress on the laser assisted vascular anastomosis(LAVA)[J]. Progress in Modern Biomedicine, 13, 7179-7181, 7149(2013).

    [25] Bregy A, Bogni S, Bernau V J et al. Solder doped polycaprolactone scaffold enables reproducible laser tissue soldering[J]. Lasers in Surgery and Medicine, 40, 716-725(2008).

    [26] Wolf-de Jonge I C D Y M, Beek J F, Balm R. 25 years of laser assisted vascular anastomosis (LAVA): what have we learned?[J]. European Journal of Vascular and Endovascular Surgery, 27, 466-476(2004).

    [27] McGuff P E, Bushnell D, Soroff H S et al. Studies of the surgical application of laser[J]. Surgical Forum, 14, 143-145(1963).

    [28] Ginsburg R, Kim D S, Guthaner D et al. Salvage of an ischemic limb by laser angioplasty: description of a new technique[J]. Clinical Cardiology, 7, 54-58(1984).

    [29] Norgren L, Hiatt W R, Dormandy J A et al. Inter-society consensus for the management of peripheral arterial disease (TASC II)[J]. Journal of Vascular Surgery, 45, S5-S67(2007).

    [30] Laird J R,, Reiser C, Biamino G et al. Excimer laser assisted angioplasty for the treatment of critical limb ischemia[J]. The Journal of Cardiovascular Surgery, 45, 239-248(2004).

    [31] Lammer J. Laser angioplasty of peripheral arteries: an epilogue?[J]. CardioVascular and Interventional Radiology, 18, 1-8(1995).

    [32] Taylor K, Reiser C. Next generation catheters for excimer laser coronary angioplasty[J]. Lasers in Medical Science, 16, 133-140(2001).

    [33] Taylor K D, Reiser C. From laser physics to clinical utilization: design and ablative properties of cardiovascular laser catheters[M]. Topaz O. Lasers in cardiovascular interventions, 1-14(2015).

    [34] Ben-Dor I, Maluenda G, Pichard A D et al. The use of excimer laser for complex coronary artery lesions[J]. Cardiovascular Revascularization Medicine, 12, 69.e1-69.e8(2011).

    [35] Biamino G. The excimer laser: science fiction fantasy or practical tool?[J]. Journal of Endovascular Therapy, 11, II-207-II-222(2004).

    [36] Steinkamp H J, Wissgott C, Rademaker J et al. Short (1-10 cm) superficial femoral artery occlusions: results of treatment with excimer laser angioplasty[J]. Cardio Vascular and Interventional Radiology, 25, 388-396(2002).

    [37] Wissgott C, Kamusella P, Lüdtke C et al. Excimer laser atherectomy after unsuccessful angioplasty of TASC C and D lesions in femoropopliteal arteries[J]. The Journal of Cardiovascular Surgery, 54, 359-365(2013).

    [38] Banerjee S, Pershwitz G, Sarode K et al. Stent and non-stent based outcomes of infrainguinal peripheral artery interventions from the multicenter XLPAD registry[J]. The Journal of Invasive Cardiology, 27, 14-18(2015).

    [39] Dippel E J, Makam P, Kovach R et al. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal in-stent restenosis: initial results from the EXCITE ISR trial (EXCImer laser randomized controlled study for treatment of FemoropopliTEal in-stent restenosis)[J]. JACC: Cardiovascular Interventions, 8, 92-101(2015).

    [40] Shammas N W, Shammas G A, Hafez A et al. Safety and one-year revascularization outcome of excimer laser ablation therapy in treating in-stent restenosis of femoropopliteal arteries: a retrospective review from a single center[J]. Cardiovascular Revascularization Medicine, 13, 341-344(2012).

    [41] Wang H, Dong X X, Yang J C et al. Finite element method simulating temperature distribution in skin induced by 980-nm pulsed laser based on pain stimulation[J]. Lasers in Medical Science, 32, 1173-1187(2017).

    [42] Mingesz R, Barna A, Gingl Z et al. Enhanced control of excimer laser pulse timing using tunable additive noise[J]. Fluctuation and Noise Letters, 11, 1240007(2012).

    [43] Chudnovskii V, Mayor A, Kiselev A et al. Foaming of blood in endovenous laser treatment[J]. Lasers in Medical Science, 33, 1821-1826(2018).

    [44] Cavezzi A, Frullini A, Ricci S et al. Treatment of varicose veins by foam sclerotherapy: two clinical series[J]. Phlebology, 17, 13-18(2002).

    [45] Schwarz T, von Hodenberg E, Furtwängler C et al. Endovenous laser ablation of varicose veins with the 1470-nm diode laser[J]. Journal of Vascular Surgery, 51, 1474-1478(2010).

    [46] Navrro L, Min R J, Bone C. Endovenous laser: a new minimally invasive method of treatment for varicose veins: preliminary observations using an 810 nm diode laser[J]. Dermatologic Surgery, 27, 117-122(2001).

    [47] Proebstle T M, Herdemann S. Early results and feasibility of incompetent perforator vein ablation by endovenous laser treatment[J]. Dermatologic Surgery, 33, 162-168(2007).

    [48] Brasic N, Lopresti D, McSwain H. Endovenous laser ablation and sclerotherapy for treatment of varicose veins[J]. Seminars in Cutaneous Medicine and Surgery, 27, 264-275(2008).

    [49] Liu X B, Lu X W. Technical difficulties and evaluation of laser in situ fenestration for reconstruction of the branches of aortic arch[J]. Chinese Journal of Practical Surgery, 38, 1373-1376(2018).

    [50] Redlinger R E,, Ahanchi S S, Panneton J M. In situ laser fenestration during thoracic endovascular aortic repair[M]. Topaz O. Lasers in cardiovascular interventions, 191-197(2015).

    [51] Ye K C, Lu X W. Laser-assisted in-situ fenestration for the treatment of aortic arch diseases[J]. Journal of Surgery Concepts & Practice, 22, 287-289(2017).

    [52] Qin J B, Zhao Z, Wang R H et al. In situ laser fenestration is a feasible method for revascularization of aortic arch during thoracic endovascular aortic repair[J]. Journal of the American Heart Association, 6, e004542(2017).

    [53] Saito N, Shimamoto T, de Takeda T et al. Excimer laser-assisted retrieval of günther tulip vena cava filters: a pilot study in a canine model[J]. Journal of Vascular and Interventional Radiology, 21, 719-724(2010).

    [54] Kuo W T, Doshi A A, Ponting J M et al. Laser-assisted removal of embedded vena cava filters: a first-in-human escalation trial in 500 patients refractory to high-force retrieval[J]. Journal of the American Heart Association, 9, e017916(2020).

    [55] Chung H, Dai T H, Sharma S K et al. The nuts and bolts of low-level laser (light) therapy[J]. Annals of Biomedical Engineering, 40, 516-533(2012).

    [56] Avci P, Gupta A, Sadasivam M et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring[J]. Seminars in Cutaneous Medicine and Surgery, 32, 41-52(2013).

    [57] Miao R H. Research progress of low level laser therapy in the treatment of diabetic foot ulcers[J]. China Healthcare Innovation, 3, 75(2008).

    [58] KazemiKhoo N, Ansari F. Blue or red: which intravascular laser light has more effects in diabetic patients?[J]. Lasers in Medical Science, 30, 363-366(2015).

    [59] Ye F Y, Dong P. Research progress of low level laser therapy in the treatment of diabetic foot ulcers[J]. Chinese Journal of Clinicians (Electronic Edition), 9, 2208-2211(2015).

    [60] Wang H C, Liu W C, Wang H et al. Research progress of low energy laser irradiation in hyperlipidemia treatment[J]. International Journal of Biomedical Engineering, 40, 53-57(2017).

    Younan Li, Xiaozheng Liu, Zitao Wang, Haitao Zhang, Weiwei Wu. Application of Laser Technology in Endovascular Imaging and Therapy[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2300002
    Download Citation