• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 111504 (2019)
Kai Zhou*, Xiangjun Wang, Zhong Wang, and Zijing Wan
Author Affiliations
  • State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.111504 Cite this Article Set citation alerts
    Kai Zhou, Xiangjun Wang, Zhong Wang, Zijing Wan. Design and Modeling of Visual Pose Measuring System with Large Vision Range[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111504 Copy Citation Text show less
    References

    [1] Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 52, 511-522(2003). http://www.sciencedirect.com/science/article/pii/S009457650200125X

         Philip N K, Ananthasayanam M R. Relative position and attitude estimation and control schemes for the final phase of an autonomous docking mission of spacecraft[J]. Acta Astronautica, 52, 511-522(2003). http://www.sciencedirect.com/science/article/pii/S009457650200125X

    [2] Gasbarri P, Sabatini M, Palmerini G B. Ground tests for vision based determination and control of formation flying spacecraft trajectories[J]. Acta Astronautica, 102, 378-391(2014). http://www.sciencedirect.com/science/article/pii/S0094576513004384

         Gasbarri P, Sabatini M, Palmerini G B. Ground tests for vision based determination and control of formation flying spacecraft trajectories[J]. Acta Astronautica, 102, 378-391(2014). http://www.sciencedirect.com/science/article/pii/S0094576513004384

    [3] Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle. [C]∥Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. no.01CH37164), May 21-26, 2001, Seoul, Korea. New York: IEEE, 1720-1727(2001).

         Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle. [C]∥Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. no.01CH37164), May 21-26, 2001, Seoul, Korea. New York: IEEE, 1720-1727(2001).

    [4] Wang X F, Dong X M, Kong X W et al. Vision based measurement of refueling drogue for autonomous aerial refueling[J]. Applied Mechanics and Materials, 590, 618-622(2014). http://www.scientific.net/AMM.590.618

         Wang X F, Dong X M, Kong X W et al. Vision based measurement of refueling drogue for autonomous aerial refueling[J]. Applied Mechanics and Materials, 590, 618-622(2014). http://www.scientific.net/AMM.590.618

    [5] Martínez C, Richardson T, Thomas P et al. A vision-based strategy for autonomous aerial refueling tasks[J]. Robotics and Autonomous Systems, 61, 876-895(2013). http://www.sciencedirect.com/science/article/pii/S0921889013000420

         Martínez C, Richardson T, Thomas P et al. A vision-based strategy for autonomous aerial refueling tasks[J]. Robotics and Autonomous Systems, 61, 876-895(2013). http://www.sciencedirect.com/science/article/pii/S0921889013000420

    [6] Wang J, Wang X J, Liu F et al. Modeling of binocular stereo vision for remote coordinate measurement and fast calibration[J]. Optics and Lasers in Engineering, 54, 269-274(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002376

         Wang J, Wang X J, Liu F et al. Modeling of binocular stereo vision for remote coordinate measurement and fast calibration[J]. Optics and Lasers in Engineering, 54, 269-274(2014). http://www.sciencedirect.com/science/article/pii/S0143816613002376

    [7] Li W M, Shan S Y, Liu H. High-precision method of binocular camera calibration with a distortion model[J]. Applied Optics, 56, 2368-2377(2017). http://europepmc.org/abstract/MED/28375284

         Li W M, Shan S Y, Liu H. High-precision method of binocular camera calibration with a distortion model[J]. Applied Optics, 56, 2368-2377(2017). http://europepmc.org/abstract/MED/28375284

    [8] Jiang T, Cheng X S, Cui H H et al. Calibration method of binocular vision system with zoom lens based on homography matrix[J]. Acta Optica Sinica, 38, 0315005(2018).

         Jiang T, Cheng X S, Cui H H et al. Calibration method of binocular vision system with zoom lens based on homography matrix[J]. Acta Optica Sinica, 38, 0315005(2018).

    [9] Ding M, Wei L, Wang B F. Vision-based estimation of relative pose in autonomous aerial refueling[J]. Chinese Journal of Aeronautics, 24, 807-815(2011). http://www.sciencedirect.com/science/article/pii/S1000936111600952

         Ding M, Wei L, Wang B F. Vision-based estimation of relative pose in autonomous aerial refueling[J]. Chinese Journal of Aeronautics, 24, 807-815(2011). http://www.sciencedirect.com/science/article/pii/S1000936111600952

    [10] Zhou K, Wang X J, Wang Z et al. Complete initial solutions for iterative pose estimation from planar objects[J]. IEEE Access, 6, 22257-22266(2018). http://ieeexplore.ieee.org/document/8340231/

         Zhou K, Wang X J, Wang Z et al. Complete initial solutions for iterative pose estimation from planar objects[J]. IEEE Access, 6, 22257-22266(2018). http://ieeexplore.ieee.org/document/8340231/

    [11] Lü Y Y, Gu Y Y, Gao Z Y et al. Design and experiment of the monocular vision measurement system based on spatial cooperation pose[J]. Laser & Optoelectronics Progress, 54, 121505(2017).

         Lü Y Y, Gu Y Y, Gao Z Y et al. Design and experiment of the monocular vision measurement system based on spatial cooperation pose[J]. Laser & Optoelectronics Progress, 54, 121505(2017).

    [12] Wang X J, Cao Y, Zhou K. Methods of monocular pose measurement based on planar objects[J]. Optics and Precision Engineering, 25, 274-280(2017).

         Wang X J, Cao Y, Zhou K. Methods of monocular pose measurement based on planar objects[J]. Optics and Precision Engineering, 25, 274-280(2017).

    [13] Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 37, 0815002(2017).

         Su J D, Qi X H, Duan X S. Plane pose measurement method based on monocular vision and checkerboard target[J]. Acta Optica Sinica, 37, 0815002(2017).

    [14] Liu H Q, Yang L H, Ren Y J et al. Large-scale 3D coordinate measurement based on orthogonal cylindrical imaging cameras[J]. Infrared and Laser Engineering, 45, 1117002(2016).

         Liu H Q, Yang L H, Ren Y J et al. Large-scale 3D coordinate measurement based on orthogonal cylindrical imaging cameras[J]. Infrared and Laser Engineering, 45, 1117002(2016).

    [15] Guan R F, Yang L H, Wang L J et al. Position and attitude precision measurement of spatial objects based on orthogonal cylindrical imaging[J]. Acta Optica Sinica, 36, 1112003(2016).

         Guan R F, Yang L H, Wang L J et al. Position and attitude precision measurement of spatial objects based on orthogonal cylindrical imaging[J]. Acta Optica Sinica, 36, 1112003(2016).

    [16] Zhou K, Wang X J, Wei H et al. Modeling and calibration of a precise optical positioning system based on four linear cameras[J]. Applied Optics, 57, 5538-5548(2018). http://www.osapublishing.org/abstract.cfm?URI=ao-57-19-5538

         Zhou K, Wang X J, Wei H et al. Modeling and calibration of a precise optical positioning system based on four linear cameras[J]. Applied Optics, 57, 5538-5548(2018). http://www.osapublishing.org/abstract.cfm?URI=ao-57-19-5538

    [17] Ai L, Yuan F, Ding Z. Study of the spatial object’s exterior attitude measurement based on multi-linear CCD. [C]∥2008 3rd IEEE Conference on Industrial Electronics and Applications, June 3-5, 2008, Singapore. New York: IEEE, 1945-1948(2008).

         Ai L, Yuan F, Ding Z. Study of the spatial object’s exterior attitude measurement based on multi-linear CCD. [C]∥2008 3rd IEEE Conference on Industrial Electronics and Applications, June 3-5, 2008, Singapore. New York: IEEE, 1945-1948(2008).

    [18] Wang Y, Yuan F, Jiang H et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 38, 0515004(2018).

         Wang Y, Yuan F, Jiang H et al. High precision pose calculation of space target based on three linear array CCD[J]. Acta Optica Sinica, 38, 0515004(2018).

    [19] Hartley R, Zisserman A[M]. Multiple view geometry in computer vision: estimation- 2D projective transformations, 87-131(2004).

         Hartley R, Zisserman A[M]. Multiple view geometry in computer vision: estimation- 2D projective transformations, 87-131(2004).

    [20] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000). http://www.emeraldinsight.com/servlet/linkout?suffix=b48&dbid=16&doi=10.1108%2FIR-07-2013-376&key=10.1109%2F34.888718

         Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000). http://www.emeraldinsight.com/servlet/linkout?suffix=b48&dbid=16&doi=10.1108%2FIR-07-2013-376&key=10.1109%2F34.888718

    [21] [M]. Numerical analysis(2012).

         Sauer T, Timothy Sauer[M]. 数值分析(2012).

         [M]. Numerical analysis(2012).

         Timothy Sauer, Sauer T[M]. 数值分析(2012).

    [22] Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 81, 155-166(2009). http://dl.acm.org/citation.cfm?id=1487412

         Lepetit V, Moreno-Noguer F, Fua P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 81, 155-166(2009). http://dl.acm.org/citation.cfm?id=1487412

    [23] Zheng Y Q, Kuang Y B, Sugimoto S et al. Revisiting the PnP problem: a fast, general and optimal solution. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2344-2351(2013).

         Zheng Y Q, Kuang Y B, Sugimoto S et al. Revisiting the PnP problem: a fast, general and optimal solution. [C]∥2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2344-2351(2013).

    [24] Lu C P, Hager G D, Mjolsness E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 610-622(2000). http://doi.ieeecomputersociety.org/10.1109/34.862199

         Lu C P, Hager G D, Mjolsness E. Fast and globally convergent pose estimation from video images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 610-622(2000). http://doi.ieeecomputersociety.org/10.1109/34.862199

    [25] Chen P, Wang C X. IEPnP: an iterative camera pose estimation algorithm based on EPnP[J]. Acta Optica Sinica, 38, 0411001(2018).

         Chen P, Wang C X. IEPnP: an iterative camera pose estimation algorithm based on EPnP[J]. Acta Optica Sinica, 38, 0411001(2018).

    Kai Zhou, Xiangjun Wang, Zhong Wang, Zijing Wan. Design and Modeling of Visual Pose Measuring System with Large Vision Range[J]. Laser & Optoelectronics Progress, 2019, 56(11): 111504
    Download Citation