• Photonics Research
  • Vol. 8, Issue 11, 1800 (2020)
Bingqian Zhou1, Jingjing Guo1、2, Changxi Yang1, and Lingjie Kong1、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2e-mail: guojj018@tsinghua.edu.cn
  • show less
    DOI: 10.1364/PRJ.403223 Cite this Article Set citation alerts
    Bingqian Zhou, Jingjing Guo, Changxi Yang, Lingjie Kong. Upconversion-luminescent hydrogel optical probe for in situ dopamine monitoring[J]. Photonics Research, 2020, 8(11): 1800 Copy Citation Text show less
    References

    [1] N. X. Tritsch, B. L. Sabatini. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron, 76, 33-50(2012).

    [2] N. D. Volkow, G. J. Wang, J. S. Fowler, D. Tomasi, F. Telang, R. Baler. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays, 32, 748-755(2010).

    [3] J. P. Kesby, D. W. Eyles, J. J. McGrath, J. G. Scott. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl. Psychiatry, 8, 30(2018).

    [4] P. Damier, E. C. Hirsch, Y. Agid, A. M. Graybiel. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122, 1437-1448(1999).

    [5] J. L. Eriksen, T. M. Dawson, D. W. Dickson, L. Petrucelli. Caught in the act: α-synuclein is the culprit in Parkinson’s disease. Neuron, 40, 453-456(2003).

    [6] X. Zhang, Q. Liu, Q. Liao, Y. Zhao. Potential roles of peripheral dopamine in tumor immunity. J. Cancer, 8, 2966-2973(2017).

    [7] J. W. Tidey, K. A. Miczek. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res., 721, 140-149(1996).

    [8] J. Chen, Y. P. Shi, J. Y. Liu. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. J. Chromatogr. A, 1003, 127-132(2003).

    [9] M. Li, J. E. Zhu, L. Zhang, X. Chen, H. Zhang, F. Zhang, S. Xu, D. G. Evans. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine. Nanoscale, 3, 4240-4246(2011).

    [10] C. Yang, E. Trikantzopoulos, M. D. Nguyen, C. B. Jacobs, Y. Wang, M. Mahjouri-Samani, I. N. Ivanov, B. J. Venton. Laser treated carbon nanotube yarn microelectrodes for rapid and sensitive detection of dopamine in vivo. ACS Sens., 1, 508-515(2016).

    [11] M. Ganesana, S. T. Lee, Y. Wang, B. J. Venton. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal. Chem., 89, 314-341(2017).

    [12] A. Roychoudhury, S. Basu, S. K. Jha. Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron., 84, 72-81(2016).

    [13] A. Jaquins-Gerstl, A. C. Michael. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst, 140, 3696-3708(2015).

    [14] T. Patriarchi, J. R. Cho, K. Merten, M. W. Howe, A. Marley, W. H. Xiong, R. W. Folk, G. J. Broussard, R. Liang, M. L. Jang, H. Zhong, D. Dombeck, M. Zastrow, A. Nimmerjahn, V. Gradinaru, J. T. Williams, L. Tian. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 360, eaat4422(2018).

    [15] F. Sun, J. Zeng, M. Jing, J. Zhou, J. Feng, S. F. Owen, Y. Luo, F. Li, H. Wang, T. Yamaguchi, Z. Yong, Y. Gao, W. Peng, L. Wang, S. Zhang, J. Du, D. Lin, M. Xu, A. C. Kreiter, G. Cui, Z. Yong. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell, 174, 481-496(2018).

    [16] K. Qu, J. Wang, J. Ren, X. Qu. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem. A Eur. J., 19, 7243-7249(2013).

    [17] Y. Tao, Y. Lin, J. Ren, X. Qu. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized aunanoclusters. Biosens. Bioelectron., 42, 41-46(2013).

    [18] A. Yildirim, M. Bayindir. Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal. Chem., 86, 5508-5512(2014).

    [19] I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. BlancoCanosa, P. E. Dawson, H. Mattoussi. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater., 9, 676-684(2010).

    [20] X. Zhang, X. Chen, S. Kai, H. Y. Wang, J. Yang, F. G. Wu, Z. Chen. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal. Chem., 87, 3360-3365(2015).

    [21] Y. Ou, A. M. Buchanan, C. E. Witt, P. Hashemi. Frontiers in electrochemical sensors for neurotransmitter detection: towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal. Meth., 11, 2738-2755(2019).

    [22] B. Kumar, A. Murali, S. Giri. Upconversion nanoplatform for FRET-based sensing of dopamine and pH. ChemistrySelect, 4, 5407-5414(2019).

    [23] B. Zhao, Y. Li. Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta, 179, 478-484(2018).

    [24] X. Zhou, P. Ma, A. Wang, C. Yu, T. Qian, S. Wu, J. Shen. Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosens. Bioelectron., 64, 404-410(2015).

    [25] J. Zhao, L. Zhao, C. Lan, S. Zhao. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sens. Actuat. B, 223, 246-251(2016).

    [26] A. Pathak, B. D. Gupta. Ultra-selective fiber optic SPR platform for the sensing of dopamine in synthetic cerebrospinal fluid incorporating permselective nafion membrane and surface imprinted MWCNTs-PPy matrix. Biosens. Bioelectron., 133, 205-214(2019).

    [27] N. Agrawal, B. Zhang, C. Saha, C. Kumar, B. K. Kaushik, S. Kumar. Development of dopamine sensor using silver nanoparticles and PEG-functionalized tapered optical fiber structure. IEEE Trans. Biomed. Eng., 76, 1542-1547(2019).

    [28] D. R. Raj, S. Prasanth, T. V. Vineeshkumar, C. Sudarsanakumar. Surface plasmon resonance based fiber optic dopamine sensor using green synthesized silver nanoparticles. Sens. Actuat. B, 224, 600-606(2016).

    [29] M. H. Kim, H. Yoon, S. H. Choi, F. Zhao, J. Kim, K. D. Song, U. Lee. Miniaturized and wireless optical neurotransmitter sensor for real-time monitoring of dopamine in the brain. Sensors, 16, 1894(2016).

    [30] S. Baluta, J. Cabaj, K. Malecha. Neurotransmitters detection using a fluorescence-based sensor with graphene quantum dots. Opt. Appl., 47, 225-231(2017).

    [31] S. Shabahang, S. Kim, S. H. Yun. Light-guiding biomaterials for biomedical applications. Adv. Funct. Mater., 28, 1706635(2018).

    [32] L. Wang, C. Zhong, D. Ke, F. Ye, J. Tu, L. Wang, Y. Lu. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater., 6, 1800427(2018).

    [33] N. Jiang, R. Ahmed, A. A. Rifat, J. Guo, Y. Yin, Y. Montelongo, H. Butt, A. K. Yetisen. Functionalized flexible soft polymer optical fibers for laser photomedicine. Adv. Opt. Mater., 6, 1701118(2018).

    [34] J. Guo, M. Niu, C. Yang. Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 4, 1285-1288(2017).

    [35] J. Guo, X. Liu, N. Jiang, A. K. Yetisen, H. Yuk, C. Yang, A. Khademhosseini, X. Zhao, S. H. Yun. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater., 28, 10244-10249(2016).

    [36] J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong. Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring. Adv. Funct. Mater., 29, 1902898(2019).

    [37] A. K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G. U. Ruiz-Esparza, A. Tamayol, Y. S. Zhang, I. Mahmood, S. Yang, K. S. Kim, H. Butt, A. Khademhosseini, S. Yun. Glucose-sensitive hydrogel optical fibers functionalized with phenylboronic acid. Adv. Mater., 29, 1606380(2017).

    [38] J. Guo, H. Huang, M. Zhou, C. Yang, L. Kong. Quantum dots-doped tapered hydrogel waveguide for ratiometric sensing of metal ions. Anal. Chem., 90, 12292-12298(2018).

    [39] M. Zhou, J. Guo, C. Yang. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber. Sens. Actuat. B, 264, 52-58(2018).

    [40] M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, S. H. Yun. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics, 7, 987-994(2013).

    [41] S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, S. H. Yun. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun., 7, 10374(2016).

    [42] H. Sheng, X. Wang, N. Kong, W. Xi, H. Yang, X. Wu, K. Wu, C. Li, J. Hu, J. Tang, J. Zhou, S. Duan, H. Wang, Z. Suo. Neural interfaces by hydrogels. Extreme Mech. Lett., 30, 100510(2019).

    [43] X. Zhao. EML webinar overview: extreme mechanics of soft materials for merging human-machine intelligence. Extreme Mech. Lett., 39, 100784(2020).

    [44] G. S. Yi, G. M. Chow. Water-soluble NaYF4:Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater., 19, 341-343(2007).

    [45] J. Guo, B. Zhou, C. Yang, Q. Dai, L. Kong. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing. Opt. Lett., 44, 5747-5750(2019).

    [46] G. C. Le Goff, R. L. Srinivas, W. A. Hill, P. S. Doyle. Hydrogel microparticles for biosensing. Eur. Polym. J., 72, 386-412(2015).

    [47] A. S. Hoffman. Hydrogels for biomedical applications. Adv. Drug Delivery Rev., 64, 18-23(2012).

    [48] X. Cao, X. L. Cai, N. Wang. Selective sensing of dopamine at MnOOH nanobelt modified electrode. Sens. Actuat. B, 160, 771-776(2011).

    [49] J. J. Zhao, L. M. Zhao, C. Q. Lan, S. L. Zhao. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sens. Actuat. B, 223, 246-251(2016).

    Bingqian Zhou, Jingjing Guo, Changxi Yang, Lingjie Kong. Upconversion-luminescent hydrogel optical probe for in situ dopamine monitoring[J]. Photonics Research, 2020, 8(11): 1800
    Download Citation