• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210368 (2021)
Yang Liu1, Qian Cao2, Xincai Diao1, Zhiyi Wei1, and Guoqing Chang1
Author Affiliations
  • 1Key Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/IRLA20210368 Cite this Article
    Yang Liu, Qian Cao, Xincai Diao, Zhiyi Wei, Guoqing Chang. Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210368 Copy Citation Text show less
    References

    [1] Crowder J G, Smith S D, Vass A, et al. Infrared Methods f Gas Detection[M]Krier A. Infrared Semiconduct Optoelectronics. [S. l.]: Springer, 2006: 595613.

    [2] K C Cossel, E M Waxman, I A Finneran, et al. Gas-phase broadband spectroscopy using active sources: Progress, status, and applications [invited]. Journal of the Optical Society of America B, 34, 104-129(2017).

    [3] Ilev I K, Waynant R W. infrared Biomedical Applications[M]Krier A. Infrared Semiconduct Optoelectronics. [S. l.]: Springer, 2006 : 615634.

    [4] M J Walsh, R K Reddy, R Bhargava. Label-free biomedical imaging with mid-ir spectroscopy. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1502-1513(2012).

    [5] M Pilling, P Gardner. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chemical Society Reviews, 45, 1935-1957(2016).

    [6] M J Thorpe, D Balslev-Clausen, M S Kirchner, et al. Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis. Optics Express, 16, 2387-2397(2008).

    [7] I Pupeza, M Huber, M Trubetskov, et al. Field-resolved infrared spectroscopy of biological systems. Nature, 577, 52-59(2020).

    [8] A Schliesser, N Picqué, T W Hänsch. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).

    [9] G Chang, Z Wei. Ultrafast fiber lasers: An expanding versatile toolbox. iScience, 23, 101101(2020).

    [10] J Biegert, P K Bates, O Chalus. New mid-infrared light sources. IEEE Journal of Selected Topics in Quantum Electronics, 18, 531-540(2012).

    [11] J Swiderski. High-power mid-infrared supercontinuum sources: Current status and future perspectives. Progress in Quantum Electronics, 38, 189-235(2014).

    [12] V Petrov. Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals. Progress in Quantum Electronics, 42, 1-106(2015).

    [13] H Pires, M Baudisch, D Sanchez, et al. Ultrashort pulse generation in the mid-IR. Progress in Quantum Electronics, 43, 1-30(2015).

    [14] M Vainio, L Halonen. Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. Physical Chemistry Chemical Physics, 18, 4266-4294(2016).

    [15] Q Cao, F X Kärtner, G Chang. Towards high power longwave mid-ir frequency combs: Power scalability of high repetition-rate difference-frequency generation. Optics Express, 28, 1369-1384(2020).

    [16] J Moses, S-W Huang. Conformal profile theory for performance scaling of ultrabroadband optical parametric chirped pulse amplification. Journal of the Optical Society of America B, 28, 812-831(2011).

    [17] G Zhou, Q Cao, F X Kärtner, et al. Energy scalable, offset-free ultrafast mid-infrared source harnessing self-phase-modulation-enabled spectral selection. Optics Letters, 43, 2953-2956(2018).

    [18] T P Butler, D Gerz, C Hofer, et al. Watt-scale 50-mHz source of single-cycle waveform-stable pulses in the molecular fingerprint region. Optics Letters, 44, 1730-1733(2019).

    [19] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation, Applications[M]. Boston, MA: Springer, 2005.

    [20] S A Diddams. The evolving optical frequency comb [invited]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [21] N Picqué, T W Hänsch. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).

    [22] W Liu, C Li, Z Zhang, et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: An energy scalable approach. Optics Express, 24, 15328-15340(2016).

    [23] W Liu, S-H Chia, H-Y Chung, et al. Energetic ultrafast fiber laser sources tunable in 1030–1215 nm for deep tissue multi-photon microscopy. Optics Express, 25, 6822-6831(2017).

    [24] H Y Chung, W Liu, Q Cao, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 microm. Optics Express, 25, 15760-15771(2017).

    [25] H-Y Chung, W Liu, Q Cao, et al. Megawatt peak power tunable femtosecond source based on self-phase modulation enabled spectral selection. Optics Express, 26, 3684-3695(2018).

    [26] R Chen, G Chang. Pre-chirp managed self-phase modulation for efficient generation of wavelength-tunable energetic femto-second pulses. Journal of the Optical Society of America B, 37, 2388-2397(2020).

    [27] G Zhou, M Xin, F X Kaertner, et al. Timing jitter of raman solitons. Optics Letters, 40, 5105-5108(2015).

    [28] Y Hua, G Zhou, W Liu, et al. Femtosecond two-color source synchronized at 100-as-precision based on spm-enabled spectral selection. Optics Letters, 45, 3410-3413(2020).

    [29] L Kador, D Haarer, K R Allakhverdiev, et al. Phase‐matched second‐harmonic generation at 789.5 nm in a gase crystal. Applied Physics Letters, 69, 731-733(1996).

    [30] Pupeza I, Sánchez D, Pronin O, et al. Compact 0.1W source of octavespanning infrared femtosecond pulses centered at 10 µm[C]CLEO, 2014.

    [31] V Berger. Nonlinear photonic crystals. Physical Review Letters, 81, 4136-4139(1998).

    [32] A M Al-Kadry, D Strickland. Generation of 400 μw at 17.5 μm using a two-color Yb fiber chirped pulse amplifier. Optics Letters, 36, 1080-1082(2011).

    [33] Y Yao, W H Knox. Difference frequency generation of femtosecond mid infrared pulses employing intense stokes pulses excitation in a photonic crystal fiber. Optics Express, 20, 25275-25283(2012).

    [34] M Hajialamdari, D Strickland. Tunable mid-infrared source from an ultrafast two-color Yb: Fiber chirped-pulse amplifier. Optics Letters, 37, 3570-3572(2012).

    [35] Y Yao, W H Knox. Broadly tunable femtosecond mid-infrared source based on dual photonic crystal fibers. Optics Express, 21, 26612-26619(2013).

    [36] D Sánchez, M Hemmer, M Baudisch, et al. Broadband mid-IR frequency comb with CdSiP2 and AgGaS2 from an Er, Tm: Ho fiber laser. Optics Letters, 39, 6883-6886(2014).

    [37] K F Lee, C J Hensley, P G Schunemann, et al. Mid-infrared frequency comb by difference frequency of erbium and thulium fiber lasers in orientation-patterned gallium phosphide. Optics Express, 25, 17411-17416(2017).

    [38] R Romero-Alvarez, R Pettus, Z Wu, et al. Two-color fiber amplifier for short-pulse, mid-infrared generation. Optics Letters, 33, 1065-1067(2008).

    [39] D G Winters, P Schlup, R A Bartels. Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7-14.9 microm wavelength region. Opt Lett, 35, 2179-2181(2010).

    [40] C R Phillips, J Jiang, C Mohr, et al. Widely tunable midinfrared difference frequency generation in orientation-patterned gaas pumped with a femtosecond Tm-fiber system. Optics Letters, 37, 2928-2930(2012).

    [41] A Ruehl, A Gambetta, I Hartl, et al. Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Optics Letters, 37, 2232-2234(2012).

    [42] A Gambetta, N Coluccelli, M Cassinerio, et al. Milliwatt-level frequency combs in the 8-14 μm range via difference frequency generation from an Er: Fiber oscillator. Opt Lett, 38, 1155-1157(2013).

    [43] J Sotor, T Martynkien, P G Schunemann, et al. All-fiber mid-infrared source tunable from 6 to 9 μm based on difference frequency generation in op-gap crystal. Opt Express, 26, 11756-11763(2018).

    [44] K Krzempek, D Tomaszewska, A Głuszek, et al. Stabilized all-fiber source for generation of tunable broadband FECO-free mid-IR frequency comb in the 7 – 9 µm range. Optics Express, 27, 37435-37445(2019).

    [45] J Huang, M Pang, X Jiang, et al. Sub-two-cycle octave-spanning mid-infrared fiber laser. Optica, 7, 574-579(2020).

    [46] J Zhang, Mak K Fai, N Nagl, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1. Light: Science & Applications, 7, 17180-17180(2018).

    [47] C Gaida, M Gebhardt, T Heuermann, et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light: Science & Applications, 7, 94(2018).

    [48] S Vasilyev, I S Moskalev, V O Smolski, et al. Super-octave longwave mid-infrared coherent transients produced by optical rectification of few-cycle 2.5-μm pulses. Optica, 6, 111-114(2019).

    [49] Q Wang, J Zhang, A Kessel, et al. Broadband mid-infrared coverage(2-17 μm) with few-cycle pulses via cascaded parametric processes. Opt Lett, 44, 2566-2569(2019).

    CLP Journals

    [1] Yuxin Gao, Jixiang Chen, Zexian Zhang, Zeyu Zhan, Zhichao Luo. Research on a 1.7 μm all-fiber mode-locked Tm-doped fiber laser[J]. Infrared and Laser Engineering, 2022, 51(7): 20220234

    Yang Liu, Qian Cao, Xincai Diao, Zhiyi Wei, Guoqing Chang. Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210368
    Download Citation