• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210368 (2021)
Yang Liu1, Qian Cao2, Xincai Diao1, Zhiyi Wei1, and Guoqing Chang1
Author Affiliations
  • 1Key Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/IRLA20210368 Cite this Article
    Yang Liu, Qian Cao, Xincai Diao, Zhiyi Wei, Guoqing Chang. Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210368 Copy Citation Text show less
    Four wavelength range in mid-IR spectrum
    Fig. 1. Four wavelength range in mid-IR spectrum
    Schematic diagram of a system for generating mid-IR pulses based on inter-pulse DFG
    Fig. 2. Schematic diagram of a system for generating mid-IR pulses based on inter-pulse DFG
    DFG in 2 mm GaSe
    Fig. 3. DFG in 2 mm GaSe
    Effects of (a) Ep, (b) Es and (c) L on idler pulse energy driven DFG in 1.03 µm
    Fig. 4. Effects of (a) Ep, (b) Es and (c) L on idler pulse energy driven DFG in 1.03 µm
    (a) Group velocity mismatch in 1.03 and 2 µm driven DFG and (b), (c) 2 µm driven DFG in 4 mm GaSe
    Fig. 5. (a) Group velocity mismatch in 1.03 and 2 µm driven DFG and (b), (c) 2 µm driven DFG in 4 mm GaSe
    Effects of (a) Ep, (b) Es and (c) L on idler pulse in 2 µm driven DFG
    Fig. 6. Effects of (a) Ep, (b) Es and (c) L on idler pulse in 2 µm driven DFG
    Principle of SESS. (a) After passing the 6 cm fiber, femtosecond pulses could be generated by filtering out the leftmost and rightmost sidelobes of the spectrum; (b) Evolution of pulse spectrum with fiber length
    Fig. 7. Principle of SESS. (a) After passing the 6 cm fiber, femtosecond pulses could be generated by filtering out the leftmost and rightmost sidelobes of the spectrum; (b) Evolution of pulse spectrum with fiber length
    Principle of SESS
    Fig. 8. Principle of SESS
    Growth process of OP-GaAs[12]
    Fig. 9. Growth process of OP-GaAs[12]
    State-of-the-art long wave mid-IR fiber laser sources based on inter-pulse DFG
    Fig. 10. State-of-the-art long wave mid-IR fiber laser sources based on inter-pulse DFG
    (a) Measured pulse energy(blue dotted curve) and duration(black dotted curve) for the pulses resulting from the filtered spectral lobes at 1.1-1.2 μm. (b) Measured spectra and average power for mid-IR pulses generated in 2 mm GaSe
    Fig. 11. (a) Measured pulse energy(blue dotted curve) and duration(black dotted curve) for the pulses resulting from the filtered spectral lobes at 1.1-1.2 μm. (b) Measured spectra and average power for mid-IR pulses generated in 2 mm GaSe
    Mid-IR non-oxide nonlinear crystals Transparency range/μmdeff /pm·V−1
    AgGaS2(AGS) 0.5-1323
    AgGaSe2 (AGSe) 0.7-1841
    ZnGeP2(ZGP) 2.0-1175
    CdSiP2(CSP) 0.7-985
    GaSe0.7-1854
    HgGa2S4(HGS) 0.5-1331
    LilnS2(LIS) 0.4-1216
    LilnSe2 (LISe) 0.5-1210
    LiGaS2(LGS) 0.3-1110
    LiGaSe2(LGSe) 0.4-1318
    Table 1. Several of the most widely used or most promising new mid-IR non-oxide crystals
    Method1SignalPumpNLCsMid-IRPhoton efficiency2Ref.
    1. Method:信号脉冲产生方法, 2. Photon efficiency:Ei×ωi/(Ep×ωp )
    SC1.105 μm50 MHz, 200 mW, 200 fs 1.038 μm GaSe400 μW @ 17.5 μm3.4%[32]
    43-58 mW 1.250-1.285 μm40 MHz, 320 fs 330-480 mW 1.02-1.04 μmAgGaS23 mW @ 5.5 μm3.4%[33]
    1.103-1.109 μm 80 mW @ 1.103 μm50 MHz 1350 mW @ 1.04 μm 1.038-1.046 μm GaSe16-20 μm 1.5 mW @ 18 μm1.9%[34]
    40-50 mW, 1.24-1.26 μm40 MHz, 300 mW 0.97-1.092 μm (SPM) AgGaS20.64 mW @ 4.5 μm 4.2-9 μm1.0%[35]
    300 mW, 2.03 μm 130 fs100 MHz, 350 mW, 72 fs 1.55 μm CdSiP2(CSP) 15 mW, 6.5 μm (2.3 optical cycles, 5.5-8 μm)18.0%[36]
    0.6 W, 60 fs 1.8-1.96 μm93.4 MHz, 1.6 W, 110 fs 1.55 μm OP-GaP69 mW @ 7.4 μm 6-11 μm20.6%[37]
    SSFS1.103 μm50 MHz, 200 mW, 200 fs 1.038 μm GaSe20 μW @ 18 μm0.2%[38]
    <100 mW, 340 fs, 1.6-1.865 μm 37 MHz, 300 mW, 640 fs 1.55 μm GaSe & AgGaSe 2up to 1.5 μW, 9.7-14.9 μm0.0031%[39]
    30 mW @ 2.5 μm72 MHz, 145 fs 430 mW @ 1.95 μm OP-GaAs1.3 mW 6.7-12.7 μm3.4%[40]
    5-25 mW 1.15-1.65 μm151 MHz, <80 fs 1.4-1.9 W @ 1.055 μm GaSeup to 1.5 mW @ 4.7 μm 3-10 μm 0.5%[41]
    100-250 mW, 84 fs 1.76-1.93 μm 250 MHz, 550 mW, 50 fs 1.55 μm GaSe4 mW @ 7.8 μm 8-14 μm3.7%[42]
    150-235 mW, 80 fs 1.93 μm48 MHz, 175 mW, 65 fs 1.56 μm OP-GaP7.4 mW @ 7.5 μm 6-9 μm20.3%[43]
    300 mW, 80 fs 1.965 μm125.07 MHz,200 mW 65 fs 1.56 μm OP-GaP5 mW @ 7.7 μm 6-9 μm12.3%[44]
    SESS<600 mW,120 fs 1.1-1.2 μm 30 MHz, <6 W, 165 fs 1.03 μm GaSe5.4 mW @ 9.5 μm 7-18 μm0.8%[17]
    Table 2. Summary of ultrafast fiber laser driven DFG to obtain long-wave mid-IR light source
    Yang Liu, Qian Cao, Xincai Diao, Zhiyi Wei, Guoqing Chang. Longwave mid-IR femtosecond pulse sources driven by ultrafast fiber lasers (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210368
    Download Citation